Figueroa-Valverde Lauro, Díaz-Cedillo Francisco, López-Ramos María, García-Cervera Elodia, Quijano-Ascencio Karen
Laboratorio de Investigación en Ciencias Biológicas y Fármaco-Química, Facultad de Ciencias Químico- Biológicas, Universidad Autónoma de Campeche, Campeche, México.
Biomedica. 2011 Jun;31(2):232-41. doi: 10.1590/S0120-41572011000200011.
Inotropic activity induced by carbamazepine-alkyne derivative in an isolated heart model and perfused to constant flow Introduction. Few data exist with respect to the effects of carbamazepine and its derivatives at cardiovascular level; furthermore, the molecular mechanisms and cellular site of action are still unclear. Objective. The effects induced by carbamazepine-alquine derivative on perfusion pressure, vascular resistance and left ventricular pressure were evaluated. Materials and methods. The effects of carbamazepine and carbamazepine-alquine on the perfusion pressure, vascular resistance and left ventricular pressure were examined in isolated rat hearts (Langendorff model). Results. Four results were obtained: (1) The carbamazepine-alquine derivative 10-9 mM increased the perfusion pressure and vascular resistance in comparison with the carbamazepine 10-9 mM; (2) the effect of carbamazepine-alquine derivative 10-9-10-4 mM on left ventricular pressure not was inhibited by metoprolol or prazosin at a dose of 10-6 mM; (3) nifedipine 10-6 mM blocked the effects exerted by the carbamazepine-alquine derivative 10-9-10--4 mM on left ventricular pressure, and (4) the carbamazepine-alquine derivative at dose of 10-9 mM increased the concentration of intracellular calcium over a time period of 3-18 min; nevertheless, in presence of nifedipine 10-6 mM this effect was inhibited significantly (p=0.005). Conclusions. The activity exerted by carbamazepine-alquine derivative on perfusion pressure, vascular resistance and left ventricular pressure involved activation of calcium channel type-L, brought indirectly changes in the intracellular calcium levels and subsequently induced a positive inotropic effect.