Suppr超能文献

同种异体免疫疗法优化移植物抗肿瘤效应:概念与争议。

Allogeneic immunotherapy to optimize the graft-versus-tumor effect: concepts and controversies.

机构信息

Division of Hematology-Oncology, Blood and Marrow Transplant Program, University of Pennsylvania Medical Center, Philadelphia, PA, USA.

出版信息

Hematology Am Soc Hematol Educ Program. 2011;2011:292-8. doi: 10.1182/asheducation-2011.1.292.

Abstract

Allogeneic stem cell transplantation (SCT) can be considered the most successful method of adoptive immunotherapy of cancer. It is successful in part because of the potent graft-versus-tumor (GVT) effects of the donor graft, which are independent of the conditioning regimen. This potent GVT reaction can be harnessed in some cases to treat patients who relapse after allogeneic SCT with the use of donor leukocyte infusions (DLIs). This has led to the rapid development of reduced-intensity conditioning (RIC) regimens for allogeneic SCT, an approach that relies primarily on GVT activity. However, the effects of GVT have clear disease specificity and remain associated with significant GVHD. Optimization of GVT induction will require a better understanding of the important target antigens and effector cells, as well as the development of methods that enhance GVT reactivity without excessive GVHD. The appropriate clinical setting and timing for GVT induction need to be defined more clearly, but ultimately, the immunologic control of cancer through allogeneic adoptive immunotherapy represents one of the most potent and promising therapeutic strategies for patients with hematologic malignancies.

摘要

异基因干细胞移植(SCT)可以被认为是癌症过继免疫治疗中最成功的方法。它之所以成功,部分原因是供体移植物具有强大的移植物抗肿瘤(GVT)效应,而这种效应独立于预处理方案。在某些情况下,可以利用这种强大的 GVT 反应,通过输注供者白细胞(DLI)来治疗异体 SCT 后复发的患者。这导致了用于异体 SCT 的低强度预处理(RIC)方案的快速发展,这种方法主要依赖于 GVT 活性。然而,GVT 的作用具有明显的疾病特异性,并仍然与显著的移植物抗宿主病(GVHD)相关。优化 GVT 的诱导需要更好地了解重要的靶抗原和效应细胞,以及开发在不引起过度 GVHD 的情况下增强 GVT 反应性的方法。明确 GVT 诱导的适当临床环境和时机,但最终,通过同种异体过继免疫治疗控制癌症是血液恶性肿瘤患者最有效和最有前途的治疗策略之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验