Department of Chemistry and Biochemistry, 1 University Station-A5300, University of Texas, Austin, TX 78712-0165, USA.
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):20913-7. doi: 10.1073/pnas.1115356108. Epub 2011 Dec 12.
The importance of noncovalent interactions in the realm of biological materials continues to inspire efforts to create artificial supramolecular polymeric architectures. These types of self-assembled materials hold great promise as environmentally stimuli-responsive materials because they are capable of adjusting their various structural parameters, such as chain length, architecture, conformation, and dynamics, to new surrounding environments upon exposure to appropriate external stimuli. Nevertheless, in spite of considerable advances in the area of responsive materials, it has proved challenging to create synthetic self-assembled materials that respond to highly disparate analytes and whose environmentally induced changes in structure can be followed directly through both various spectroscopic and X-ray diffraction analyses. Herein, we report a new set of artificial self-assembled materials obtained by simply mixing two appropriately chosen, heterocomplementary macrocyclic receptors, namely a tetrathiafulvalene-functionalized calix[4]pyrrole and a bis(dinitrophenyl)-meso-substituted calix[4]pyrrole. The resulting polymeric materials, stabilized by combination of donor-acceptor and hydrogen bonding interactions, undergo dynamic, reversible dual guest-dependent structural transformations upon exposure to two very different types of external chemical inputs, namely chloride anion and trinitrobenzene. The structure and dynamics of the copolymers and their analyte-dependent responsive behavior was established via single crystal X-ray crystallography, SEM, heterocomplementary isodesmic analysis, 1- and 2D NMR, and dynamic light scattering spectroscopies. Our results demonstrate the benefit of using designed heterocomplementary interactions of two functional macrocyclic receptors to create synthetic, self-assembled materials for the development of "smart" sensory materials that mimic the key biological attributes of multianalyte recognition and substrate-dependent multisignaling.
非共价相互作用在生物材料领域的重要性继续激发人们努力创造人工超分子聚合结构。这些自组装材料作为环境刺激响应材料具有很大的应用前景,因为它们能够在暴露于适当的外部刺激时调整各种结构参数,如链长、结构、构象和动力学,以适应新的周围环境。然而,尽管在响应性材料领域取得了相当大的进展,但创造对高度不同的分析物有响应的合成自组装材料仍然具有挑战性,并且其结构的环境诱导变化可以通过各种光谱和 X 射线衍射分析直接跟踪。在此,我们报告了一组通过简单混合两种适当选择的杂互补大环受体获得的新型人工自组装材料,即四硫富瓦烯功能化杯[4]吡咯和双(二硝基苯基)-中位取代杯[4]吡咯。所得的聚合材料通过供体-受体和氢键相互作用稳定,在暴露于两种非常不同类型的外部化学输入(即氯离子和三硝基苯)时,经历动态、可逆的双重客体依赖性结构转变。通过单晶 X 射线晶体学、SEM、杂互补等质子分析、1D 和 2D NMR 以及动态光散射光谱学确定了共聚物的结构和动力学及其对分析物的响应行为。我们的结果表明,使用两个功能大环受体的设计杂互补相互作用来创建用于开发“智能”传感材料的合成自组装材料是有益的,这些材料模拟了多分析物识别和底物依赖性多信号传递的关键生物学属性。