Suppr超能文献

生物组织的结构各向异性在多孔弹性波传播中的作用。

Role of structural anisotropy of biological tissues in poroelastic wave propagation.

作者信息

Cardoso Luis, Cowin Stephen C

机构信息

The Department of Biomedical Engineering, The City University of New York, New York, NY 10031.

出版信息

Mech Mater. 2012 Jan;44:174-188. doi: 10.1016/j.mechmat.2011.08.007.

Abstract

Ultrasound waves have a broad range of clinical applications as a non-destructive testing approach in imaging and in the diagnoses of medical conditions. Generally, biological tissues are modeled as an homogenized equivalent medium with an apparent density through which a single wave propagates. Only the first wave arriving at the ultrasound probe is used for the measurement of the speed of sound. However, the existence of a second wave in tissues such as cancellous bone has been reported and its existence is an unequivocal signature of Biot type poroelastic media. To account for the fact that ultrasound is sensitive to microarchitecture as well as density, a fabric-dependent anisotropic poroelastic ultrasound (PEU) propagation theory was recently developed. Key to this development was the inclusion of the fabric tensor - a quantitative stereological measure of the degree of structural anisotropy of bone - into the linear poroelasticity theory. In the present study, this framework is extended to the propagation of waves in several soft and hard tissues. It was found that collagen fibers in soft tissues and the mineralized matrix in hard tissues are responsible for the anisotropy of the solid tissue constituent through the fabric tensor in the model.

摘要

超声波作为一种无损检测方法,在医学成像和疾病诊断中具有广泛的临床应用。一般来说,生物组织被建模为一种具有表观密度的均匀等效介质,单一波在其中传播。仅使用到达超声探头的第一个波来测量声速。然而,已有报道称在诸如松质骨等组织中存在第二个波,其存在是比奥型多孔弹性介质的明确特征。为了考虑到超声对微观结构以及密度敏感这一事实,最近发展了一种依赖于织物的各向异性多孔弹性超声(PEU)传播理论。这一发展的关键在于将织物张量——一种对骨结构各向异性程度的定量体视学测量——纳入线性多孔弹性理论。在本研究中,该框架被扩展到几种软组织和硬组织中的波传播。研究发现,软组织中的胶原纤维和硬组织中的矿化基质通过模型中的织物张量导致了固体组织成分的各向异性。

相似文献

1
Role of structural anisotropy of biological tissues in poroelastic wave propagation.
Mech Mater. 2012 Jan;44:174-188. doi: 10.1016/j.mechmat.2011.08.007.
2
Fabric dependence of quasi-waves in anisotropic porous media.
J Acoust Soc Am. 2011 May;129(5):3302-16. doi: 10.1121/1.3557032.
3
Fabric dependence of wave propagation in anisotropic porous media.
Biomech Model Mechanobiol. 2011 Feb;10(1):39-65. doi: 10.1007/s10237-010-0217-7. Epub 2010 May 12.
4
Fabric dependence of bone ultrasound.
Acta Bioeng Biomech. 2010;12(2):3-23.
6
Microarchitecture and bone quality in the human calcaneus: local variations of fabric anisotropy.
J Bone Miner Res. 2012 Dec;27(12):2562-72. doi: 10.1002/jbmr.1710.
7
In vitro acoustic waves propagation in human and bovine cancellous bone.
J Bone Miner Res. 2003 Oct;18(10):1803-12. doi: 10.1359/jbmr.2003.18.10.1803.
8
Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
Int J Numer Method Biomed Eng. 2012 Aug;28(8):861-76. doi: 10.1002/cnm.2462. Epub 2012 Feb 29.
9
Tortuosity and the Averaging of Microvelocity Fields in Poroelasticity.
J Appl Mech. 2013 Mar;80(2):0209061-209065. doi: 10.1115/1.4007923. Epub 2013 Feb 4.
10
Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.
Phys Med Biol. 2007 Jan 7;52(1):59-73. doi: 10.1088/0031-9155/52/1/005. Epub 2006 Dec 6.

引用本文的文献

1
A novel tube law analysis under anisotropic external load.
Sci Rep. 2024 Dec 17;14(1):30529. doi: 10.1038/s41598-024-82476-7.
2
Ultrasonic Assessment of Cancellous Bone Based on the Two-Wave Phenomenon.
Adv Exp Med Biol. 2022;1364:119-143. doi: 10.1007/978-3-030-91979-5_6.
4
Why Are Viscosity and Nonlinearity Bound to Make an Impact in Clinical Elastographic Diagnosis?
Sensors (Basel). 2020 Apr 22;20(8):2379. doi: 10.3390/s20082379.
8
Prediction of trabecular bone principal structural orientation using quantitative ultrasound scanning.
J Biomech. 2012 Jun 26;45(10):1790-5. doi: 10.1016/j.jbiomech.2012.04.022. Epub 2012 May 5.

本文引用的文献

1
A symmetry invariant formulation of the relationship between the elasticity tensor and the fabric tensor.
Mech Mater. 2012 Nov;54:70-83. doi: 10.1016/j.mechmat.2012.07.004. Epub 2012 Jul 15.
2
Fabric dependence of quasi-waves in anisotropic porous media.
J Acoust Soc Am. 2011 May;129(5):3302-16. doi: 10.1121/1.3557032.
3
Fabric dependence of wave propagation in anisotropic porous media.
Biomech Model Mechanobiol. 2011 Feb;10(1):39-65. doi: 10.1007/s10237-010-0217-7. Epub 2010 May 12.
6
Frequency dependence of average phase shift from human calcaneus in vitro.
J Acoust Soc Am. 2009 Dec;126(6):3291-300. doi: 10.1121/1.3257550.
7
Characterization of the trabecular bone structure using frequency modulated ultrasound pulse.
J Acoust Soc Am. 2009 Jun;125(6):4071-7. doi: 10.1121/1.3126993.
8
Propagation of two longitudinal waves in human cancellous bone: an in vitro study.
J Acoust Soc Am. 2009 May;125(5):3460-6. doi: 10.1121/1.3111107.
10
Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Jul;55(7):1480-7. doi: 10.1109/TUFFC.2008.823.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验