Suppr超能文献

海马 CA1 锥体神经元中 Zn2+ 的短暂增加导致可逆性记忆缺失。

Transient increase in Zn2+ in hippocampal CA1 pyramidal neurons causes reversible memory deficit.

机构信息

Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Global COE-21, Suruga-ku, Shizuoka, Japan.

出版信息

PLoS One. 2011;6(12):e28615. doi: 10.1371/journal.pone.0028615. Epub 2011 Dec 7.

Abstract

The translocation of synaptic Zn(2+) to the cytosolic compartment has been studied to understand Zn(2+) neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn(2+) in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn(2+) in the hippocampus was induced with clioquinol (CQ), a zinc ionophore. Zn(2+) delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP) in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn(2+) levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl(2) into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn(2+) in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn(2+) and/or the preferential vulnerability to Zn(2+) in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn(2+) in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn(2+). The present study indicates that the transient increase in cytosolic Zn(2+) in CA1 pyramidal neurons reversibly impairs object recognition memory.

摘要

已经研究了突触锌离子(Zn2+)向细胞溶质隔室的易位,以了解神经退行性疾病中的 Zn2+神经毒性。然而,尚不清楚细胞溶质隔室中 Zn2+的适度增加是否会影响海马中的记忆处理。在本研究中,使用锌离子载体 clioquinol(CQ)诱导海马细胞溶质中 Zn2+的适度增加。腹腔注射 Zn-CQ 2 小时后,在海马切片中短暂增加细胞内 Zn2+水平,导致 CA1 长时程增强(LTP)短暂减弱,随后出现物体识别记忆缺陷。注射 ZnCl2 到 CA1 后 30 分钟,物体识别记忆短暂受损,但注射到齿状回不会导致细胞内 Zn2+在齿状回颗粒细胞层中显著增加。物体识别记忆缺陷可能与 CA1 锥体神经元中 Zn2+的优先增加和/或对 Zn2+的优先易感性有关。在 100mM KCl 诱导的 CA1 细胞溶质中内源性 Zn2+增加的情况下,物体识别记忆也短暂受损,而通过共同注射 CaEDTA 来阻止细胞溶质 Zn2+的增加则可改善这种情况。本研究表明,CA1 锥体神经元中细胞溶质 Zn2+的短暂增加可可逆地损害物体识别记忆。

相似文献

1
Transient increase in Zn2+ in hippocampal CA1 pyramidal neurons causes reversible memory deficit.
PLoS One. 2011;6(12):e28615. doi: 10.1371/journal.pone.0028615. Epub 2011 Dec 7.
2
Influx of extracellular Zn(2+) into the hippocampal CA1 neurons is required for cognitive performance via long-term potentiation.
Neuroscience. 2015 Sep 24;304:209-16. doi: 10.1016/j.neuroscience.2015.07.042. Epub 2015 Jul 21.
3
Excess influx of Zn(2+) into dentate granule cells affects object recognition memory via attenuated LTP.
Neurochem Int. 2015 Aug;87:60-5. doi: 10.1016/j.neuint.2015.05.006. Epub 2015 Jun 1.
4
Involvement of intracellular Zn signaling in LTP at perforant pathway-CA1 pyramidal cell synapse.
Hippocampus. 2017 Jul;27(7):777-783. doi: 10.1002/hipo.22730. Epub 2017 Apr 13.
5
Intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory.
Hippocampus. 2014 Nov;24(11):1404-12. doi: 10.1002/hipo.22322. Epub 2014 Jul 4.
7
Impairment of recognition memory and hippocampal long-term potentiation after acute exposure to clioquinol.
Neuroscience. 2010 Dec 1;171(2):443-50. doi: 10.1016/j.neuroscience.2010.09.017. Epub 2010 Sep 16.
8
Involvement of glucocorticoid-mediated Zn2+ signaling in attenuation of hippocampal CA1 LTP by acute stress.
Neurochem Int. 2012 Mar;60(4):394-9. doi: 10.1016/j.neuint.2012.01.021. Epub 2012 Jan 27.
9
CA1 LTP Attenuated by Corticosterone is Canceled by Effusol via Rescuing Intracellular Zn Dysregulation.
Cell Mol Neurobiol. 2019 Oct;39(7):975-983. doi: 10.1007/s10571-019-00693-5. Epub 2019 May 30.
10
Amyloid β-mediated Zn2+ influx into dentate granule cells transiently induces a short-term cognitive deficit.
PLoS One. 2014 Dec 23;9(12):e115923. doi: 10.1371/journal.pone.0115923. eCollection 2014.

引用本文的文献

2
Extracellular Zn-Dependent Amyloid-β Neurotoxicity in Alzheimer's Disease Pathogenesis.
Biol Trace Elem Res. 2021 Jan;199(1):53-61. doi: 10.1007/s12011-020-02131-w. Epub 2020 Apr 13.
3
CA1 LTP Attenuated by Corticosterone is Canceled by Effusol via Rescuing Intracellular Zn Dysregulation.
Cell Mol Neurobiol. 2019 Oct;39(7):975-983. doi: 10.1007/s10571-019-00693-5. Epub 2019 May 30.
4
A Cancer-Selective Zinc Ionophore Inspired by the Natural Product Naamidine A.
ACS Chem Biol. 2019 Jan 18;14(1):106-117. doi: 10.1021/acschembio.8b00977. Epub 2019 Jan 8.
5
Rapid Intracellular Zn Dysregulation via Membrane Corticosteroid Receptor Activation Affects In Vivo CA1 LTP.
Mol Neurobiol. 2019 Feb;56(2):1356-1365. doi: 10.1007/s12035-018-1159-9. Epub 2018 Jun 8.
6
The Impact of Synaptic Zn Dynamics on Cognition and Its Decline.
Int J Mol Sci. 2017 Nov 14;18(11):2411. doi: 10.3390/ijms18112411.
7
Weakened Intracellular Zn-Buffering in the Aged Dentate Gyrus and Its Involvement in Erasure of Maintained LTP.
Mol Neurobiol. 2018 May;55(5):3856-3865. doi: 10.1007/s12035-017-0615-2. Epub 2017 May 25.
8
Maintained LTP and Memory Are Lost by Zn Influx into Dentate Granule Cells, but Not Ca Influx.
Mol Neurobiol. 2018 Feb;55(2):1498-1508. doi: 10.1007/s12035-017-0428-3. Epub 2017 Feb 7.
9
Influence of Long-Term Zinc Administration on Spatial Learning and Exploratory Activity in Rats.
Biol Trace Elem Res. 2016 Aug;172(2):408-418. doi: 10.1007/s12011-015-0597-8. Epub 2016 Jan 6.

本文引用的文献

1
Insight into glutamate excitotoxicity from synaptic zinc homeostasis.
Int J Alzheimers Dis. 2010 Dec 20;2011:491597. doi: 10.4061/2011/491597.
2
Knockout of Zn transporters Zip-1 and Zip-3 attenuates seizure-induced CA1 neurodegeneration.
J Neurosci. 2011 Jan 5;31(1):97-104. doi: 10.1523/JNEUROSCI.5162-10.2011.
3
Zinc signaling in the hippocampus and its relation to pathogenesis of depression.
Mol Neurobiol. 2011 Oct;44(2):166-74. doi: 10.1007/s12035-010-8158-9. Epub 2010 Dec 15.
4
Impairment of recognition memory and hippocampal long-term potentiation after acute exposure to clioquinol.
Neuroscience. 2010 Dec 1;171(2):443-50. doi: 10.1016/j.neuroscience.2010.09.017. Epub 2010 Sep 16.
5
Zinc-mediated attenuation of hippocampal mossy fiber long-term potentiation induced by forskolin.
Neurochem Int. 2010 Nov;57(5):608-14. doi: 10.1016/j.neuint.2010.07.010. Epub 2010 Jul 30.
6
Differential effects of zinc influx via AMPA/kainate receptor activation on subsequent induction of hippocampal CA1 LTP components.
Brain Res. 2010 Oct 1;1354:188-95. doi: 10.1016/j.brainres.2010.07.039. Epub 2010 Jul 21.
7
Zinc differentially acts on components of long-term potentiation at hippocampal CA1 synapses.
Brain Res. 2010 Apr 6;1323:59-64. doi: 10.1016/j.brainres.2010.01.085. Epub 2010 Feb 6.
8
Insight into zinc signaling from dietary zinc deficiency.
Brain Res Rev. 2009 Dec 11;62(1):33-44. doi: 10.1016/j.brainresrev.2009.09.003. Epub 2009 Sep 10.
9
Unique response of zinc in the hippocampus to behavioral stress and attenuation of subsequent mossy fiber long-term potentiation.
Neurotoxicology. 2009 Jul;30(4):712-7. doi: 10.1016/j.neuro.2009.05.009. Epub 2009 Jun 6.
10
Effects of clioquinol on memory impairment and the neurochemical modifications induced by scrapie infection in golden hamsters.
Brain Res. 2009 Jul 14;1280:195-200. doi: 10.1016/j.brainres.2009.05.031. Epub 2009 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验