Suppr超能文献

应用 Rprop 神经网络进行移动台位置预测。

Applying Rprop neural network for the prediction of the mobile station location.

机构信息

Department of Information Management, Tainan University of Technology, Tainan City, Taiwan.

出版信息

Sensors (Basel). 2011;11(4):4207-30. doi: 10.3390/s110404207. Epub 2011 Apr 8.

Abstract

Wireless location is the function used to determine the mobile station (MS) location in a wireless cellular communications system. When it is very hard for the surrounding base stations (BSs) to detect a MS or the measurements contain large errors in non-line-of-sight (NLOS) environments, then one need to integrate all available heterogeneous measurements to increase the location accuracy. In this paper we propose a novel algorithm that combines both time of arrival (TOA) and angle of arrival (AOA) measurements to estimate the MS in NLOS environments. The proposed algorithm utilizes the intersections of two circles and two lines, based on the most resilient back-propagation (Rprop) neural network learning technique, to give location estimation of the MS. The traditional Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP) have convergence problems, and even if the measurements are fairly accurate, the performance of these algorithms depends highly on the relative position of the MS and BSs. Different NLOS models were used to evaluate the proposed methods. Numerical results demonstrate that the proposed algorithms can not only preserve the convergence solution, but obtain precise location estimations, even in severe NLOS conditions, particularly when the geometric relationship of the BSs relative to the MS is poor.

摘要

无线定位是用于确定无线蜂窝通信系统中移动台 (MS) 位置的功能。当周围基站 (BS) 很难检测到 MS 或在非视距 (NLOS) 环境下测量值包含较大误差时,则需要整合所有可用的异构测量值以提高定位精度。在本文中,我们提出了一种新的算法,该算法结合了到达时间 (TOA) 和到达角 (AOA) 测量值来估计 NLOS 环境中的 MS。所提出的算法利用两个圆和两条线的交点,基于最具弹性的后向传播 (Rprop) 神经网络学习技术,给出 MS 的位置估计。传统的泰勒级数算法 (TSA) 和混合位置线算法 (HLOP) 存在收敛问题,即使测量值相当准确,这些算法的性能也高度依赖于 MS 和 BS 的相对位置。不同的 NLOS 模型被用于评估所提出的方法。数值结果表明,所提出的算法不仅可以保留收敛解,而且可以获得精确的位置估计,即使在严重的 NLOS 条件下,特别是当 BS 相对于 MS 的几何关系较差时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa69/3231337/02e4ae3746dc/sensors-11-04207f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验