College of Electronics and Information Engineering, West Anhui University, Lu'an, China.
Robot Research Center, Shandong University of Science and Technology, Qingdao, China.
Math Biosci Eng. 2022 Jun 22;19(9):9098-9124. doi: 10.3934/mbe.2022423.
Traditional back propagation neural networks (BPNNs) for ultrawideband (UWB) indoor localization can effectively improve localization accuracy, although there is high likelihood of becoming trapped in nearby minima. To solve this problem, the random weights and thresholds of the BPNN are optimized using the Harris Hawks optimization algorithm (HHO) to obtain the optimal global solution to enhance the UWB indoor positioning accuracy and NLOS resistance. The results show that the predicted trajectory of the HHO and BPNN hybrid algorithm (HHO-BP) matches the actual position in the two-dimensional localization scenario with four base stations; the optimized average positioning error is effectively reduced in both indoor LOS and NLOS environments. In the LOS environment, the total mean error of the traditional BPNN algorithm is 6.52 cm, which is 26.99% better than the UWB measurement error; in the NLOS environment, the total mean error of the conventional BPNN is 14.82 cm, which is 50.08% better than the UWB measurement error. The HHO-BP algorithm is further optimized on this basis, and the total mean error in the LOS environment is 4.50 cm, which is 22.57% better than the conventional BPNN algorithm; in the NLOS environment, the total mean error is 9.56 cm, which is 17.54% better than the conventional BPNN algorithm. The experimental findings suggest that the approach has greater calibration accuracy and stability than BPNN, making it a viable choice for scenarios requiring high positional precision.
传统的用于超宽带 (UWB) 室内定位的反向传播神经网络 (BPNN) 可以有效提高定位精度,尽管存在陷入局部极小值的高可能性。为了解决这个问题,使用哈里斯鹰优化算法 (HHO) 优化 BPNN 的随机权重和阈值,以获得优化的全局解,从而提高 UWB 室内定位精度和抗非视距 (NLOS) 能力。结果表明,HHO 和 BPNN 混合算法 (HHO-BP) 的预测轨迹在具有四个基站的二维定位场景中与实际位置匹配;在室内视距和非视距环境中,优化后的平均定位误差都得到了有效降低。在视距环境中,传统 BPNN 算法的总平均误差为 6.52cm,比 UWB 测量误差好 26.99%;在非视距环境中,传统 BPNN 的总平均误差为 14.82cm,比 UWB 测量误差好 50.08%。在此基础上,进一步优化 HHO-BP 算法,视距环境中的总平均误差为 4.50cm,比传统 BPNN 算法好 22.57%;在非视距环境中,总平均误差为 9.56cm,比传统 BPNN 算法好 17.54%。实验结果表明,该方法比 BPNN 具有更高的校准精度和稳定性,是需要高精度定位场景的一种可行选择。