Department of Automation, Tsinghua University, Beijing 100084, China.
Sensors (Basel). 2011;11(8):7341-63. doi: 10.3390/s110807341. Epub 2011 Jul 25.
The star centroid estimation is the most important operation, which directly affects the precision of attitude determination for star sensors. This paper presents a theoretical study of the systematic error introduced by the star centroid estimation algorithm. The systematic error is analyzed through a frequency domain approach and numerical simulations. It is shown that the systematic error consists of the approximation error and truncation error which resulted from the discretization approximation and sampling window limitations, respectively. A criterion for choosing the size of the sampling window to reduce the truncation error is given in this paper. The systematic error can be evaluated as a function of the actual star centroid positions under different Gaussian widths of star intensity distribution. In order to eliminate the systematic error, a novel compensation algorithm based on the least squares support vector regression (LSSVR) with Radial Basis Function (RBF) kernel is proposed. Simulation results show that when the compensation algorithm is applied to the 5-pixel star sampling window, the accuracy of star centroid estimation is improved from 0.06 to 6 × 10(-5) pixels.
星点质心估计算法是星敏感器姿态确定中最重要的操作,直接影响星敏感器的姿态测量精度。本文对星点质心估计算法引入的系统误差进行了理论研究。通过频域分析和数值模拟对系统误差进行了分析,结果表明系统误差由离散化近似和采样窗口限制引起的逼近误差和截断误差组成。本文给出了一种选择采样窗口大小以减小截断误差的准则。在不同的星点强度分布高斯宽度下,系统误差可以作为实际星点质心位置的函数进行评估。为了消除系统误差,提出了一种基于径向基函数核的最小二乘支持向量回归(LSSVR)的补偿算法。仿真结果表明,当补偿算法应用于 5 像素星采样窗口时,星点质心估计的精度从 0.06 提高到了 6×10(-5)像素。