Pfizer, 10777 Science Center Drive, San Diego, CA 92121, USA.
J Clin Pharmacol. 2012 Nov;52(11):1676-88. doi: 10.1177/0091270011428138. Epub 2011 Dec 13.
Valproic acid (VPA) dosing strategies used in recent clinical trials in patients with spinal muscular atrophy (SMA) have utilized a paradigm of monitoring trough levels to estimate drug exposure with subsequent dose titration. The validity of this approach remains uncertain and could be improved by understanding sources of pharmacokinetic variability. A population pharmacokinetic analysis of VPA in pediatric patients with epilepsy was recently performed. The pooled data set included 52 subjects with epilepsy, ages 1 to 17 years, who received intravenous and/or various oral formulations. The data was best fit by a 2-compartment model; inclusion of age and weight reduced intersubject variability for clearance (41%), central volume (70%), and peripheral volume (42%) over the base model. The final model for clearance and volume parameters was clearance = 0.854 · (weight/70)(0.75); central volume of distribution = 10.3 · (weight/70)(1.0) · (age/8.5)(-0.267); peripheral volume of distribution = 4.08 · (weight/70)(1.0); and intercompartmental clearance = 5.34 · (weight/70)(0.75). Application of the model to data from a clinical trial in SMA patients suggests altered kinetics, perhaps based on underlying physiologic differences such as alterations in lean body mass. Future studies in SMA should incorporate modeling and simulation techniques to support individualized dosing and further assess if additional patient-specific factors necessitate alternative dosing strategies.
丙戊酸(VPA)在最近的脊髓性肌萎缩症(SMA)患者临床试验中使用的剂量策略是通过监测谷浓度来估计药物暴露量,然后进行剂量滴定。这种方法的有效性尚不确定,可以通过了解药代动力学变异性的来源来改进。最近对接受静脉内和/或各种口服制剂的年龄在 1 至 17 岁的癫痫儿科患者进行了 VPA 的群体药代动力学分析。汇总数据集包括 52 名癫痫患者,该数据最好由 2 隔室模型拟合;纳入年龄和体重可将清除率(41%)、中央容积(70%)和外周容积(42%)相对于基础模型的个体间变异性降低。清除率和容积参数的最终模型为清除率=0.854·(体重/70)(0.75);中央分布容积=10.3·(体重/70)(1.0)·(年龄/8.5)(-0.267);外周分布容积=4.08·(体重/70)(1.0);和隔室间清除率=5.34·(体重/70)(0.75)。该模型在 SMA 患者临床试验数据中的应用表明存在改变的药代动力学,可能基于基础生理差异,如瘦体重的改变。未来在 SMA 中的研究应纳入建模和模拟技术,以支持个体化给药,并进一步评估是否需要其他患者特定因素来替代给药策略。