Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6.
J Phys Chem B. 2012 Jan 26;116(3):1143-54. doi: 10.1021/jp2089559. Epub 2012 Jan 10.
To determine if (•)OH can initiate the unfolding of an amino acid residue, the elementary reaction coordinates of H abstraction by (•)OH different conformations (β(L), γ(L), γ(D), α(L), and α(D)) of Gly and Ala dimethyl amides were computed using first-principles quantum computations. The MPWKCIS1K/6-311++G(3df,2p)//BHandHLYP/6-311+G(d,p) level of theory was selected after different combinations of functionals and basis sets were compared. The structures of Gly and Ala in the elementary reaction steps were compared to the conformers of the Gly, Gly(•), Ala, and Ala(•) structures in the absence of (•)OH/H(2)O, which were identified by optimizing the minima of the respective potential energy surfaces. A dramatic change in conformation is observed in the Gly and Ala conformers after conversion to Gly(•) and Ala(•), respectively, and this change can be monitored along the minimal energy pathway. The β(L) conformer of Gly (-0.3 kJ mol(-1)) and Ala (-1.6 kJ mol(-1)) form the lowest-lying transition states in the reaction with (•)OH, whereas the side chain of Ala strongly destabilizes the α conformers compared to the γ conformers, which could cause the lower reactivity shown in Ala. This effect shown in Ala could affect the abstraction of hydrogen from Ala and the other chiral amino acid residues in the helices. The energy of subsequent hydrogen abstraction reactions between Ala(•) and Gly(•) and H(2)O(2) remains approximately 90 kJ mol(-1) below the entrance level of the (•)OH reaction, indicating that the (•)OH radical can initiate an α to β transition in an amino acid residue if a molecule such as H(2)O(2) can provide the hydrogen atom necessary to re-form Gly and Ala. This work delineates the mechanism of the rapid (•)OH-initiated unfolding of peptides and proteins which has been proposed in Alzheimer's and other peptide misfolding diseases involving amyloidogenic peptides.
为了确定(•)OH 是否可以引发氨基酸残基的去折叠,我们使用第一性原理量子计算计算了 Gly 和 Ala 二甲基酰胺的不同构象(β(L)、γ(L)、γ(D)、α(L)和α(D))中 H 提取的基本反应坐标。经过比较不同的函数组合和基组,选择了 MPWKCIS1K/6-311++G(3df,2p)//BHandHLYP/6-311+G(d,p) 理论水平。在没有(•)OH/H(2)O 的情况下,Gly 和 Ala 在基本反应步骤中的结构与 Gly、Gly(•)、Ala 和 Ala(•)结构的构象进行了比较,这些构象是通过优化各自势能面的最小值来确定的。在转化为 Gly(•)和 Ala(•)后,分别观察到 Gly 和 Ala 构象发生了剧烈的构象变化,并且可以沿着最小能量途径监测到这种变化。Gly(-0.3 kJ mol(-1))和 Ala(-1.6 kJ mol(-1))的β(L)构象形成与(•)OH 反应的最低能过渡态,而与γ构象相比,Ala 的侧链强烈稳定了α构象,这可能导致 Ala 显示出较低的反应性。Ala 中显示的这种效应可能会影响螺旋中的 Ala 和其他手性氨基酸残基的氢提取。Ala(•)和 Gly(•)与 H(2)O(2)之间随后的氢提取反应的能量仍然比(•)OH 反应的入口水平低约 90 kJ mol(-1),这表明如果像 H(2)O(2)这样的分子能够提供重新形成 Gly 和 Ala 所需的氢原子,则(•)OH 自由基可以引发氨基酸残基的α到β 转变。这项工作描绘了在涉及淀粉样肽的阿尔茨海默病和其他肽错误折叠疾病中已经提出的肽和蛋白质的快速(•)OH 引发的去折叠的机制。