Suppr超能文献

全复数域径向基函数神经网络中的元认知学习。

Metacognitive learning in a fully complex-valued radial basis function neural network.

机构信息

School of Computer Engineering, Nanyang Technological University, 639798 Singapore.

出版信息

Neural Comput. 2012 May;24(5):1297-328. doi: 10.1162/NECO_a_00254. Epub 2011 Dec 14.

Abstract

Recent studies on human learning reveal that self-regulated learning in a metacognitive framework is the best strategy for efficient learning. As the machine learning algorithms are inspired by the principles of human learning, one needs to incorporate the concept of metacognition to develop efficient machine learning algorithms. In this letter we present a metacognitive learning framework that controls the learning process of a fully complex-valued radial basis function network and is referred to as a metacognitive fully complex-valued radial basis function (Mc-FCRBF) network. Mc-FCRBF has two components: a cognitive component containing the FC-RBF network and a metacognitive component, which regulates the learning process of FC-RBF. In every epoch, when a sample is presented to Mc-FCRBF, the metacognitive component decides what to learn, when to learn, and how to learn based on the knowledge acquired by the FC-RBF network and the new information contained in the sample. The Mc-FCRBF learning algorithm is described in detail, and both its approximation and classification abilities are evaluated using a set of benchmark and practical problems. Performance results indicate the superior approximation and classification performance of Mc-FCRBF compared to existing methods in the literature.

摘要

最近关于人类学习的研究表明,在元认知框架下进行自我调节学习是高效学习的最佳策略。由于机器学习算法是受到人类学习原理的启发,因此需要将元认知的概念融入到开发高效的机器学习算法中。在这封信中,我们提出了一个元认知学习框架,该框架控制着完全复值径向基函数网络的学习过程,称为元认知完全复值径向基函数(Mc-FCRBF)网络。Mc-FCRBF 有两个组成部分:一个认知组件,其中包含 FC-RBF 网络,另一个元认知组件,它调节 FC-RBF 的学习过程。在每个时期,当一个样本被呈现给 Mc-FCRBF 时,元认知组件根据 FC-RBF 网络获得的知识和样本中包含的新信息,决定学习什么、何时学习以及如何学习。详细描述了 Mc-FCRBF 的学习算法,并使用一组基准和实际问题评估了它的逼近和分类能力。性能结果表明,与文献中的现有方法相比,Mc-FCRBF 具有优越的逼近和分类性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验