Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15219, USA.
J Heart Lung Transplant. 2012 Feb;31(2):140-9. doi: 10.1016/j.healun.2011.11.003. Epub 2011 Dec 14.
Right ventricular (RV) failure is a significant complication after implantation of a left ventricular assist device (LVAD). It is therefore important to identify patients at risk a priori. However, prognostic models derived from multivariate analyses have had limited predictive power.
This study retrospectively analyzed the records of 183 LVAD recipients between May 1996 and October 2009; of these, 27 later required a RVAD (RVAD(+)) and 156 remained on LVAD only (RVAD(-)) until transplant or death. A decision tree model was constructed to represent combinatorial non-linear relationships of the pre-operative data that are predictive of the need for RVAD support.
An optimal set of 8 pre-operative variables were identified: transpulmonary gradient, age, right atrial pressure, international normalized ratio, heart rate, white blood cell count, alanine aminotransferase, and the number of inotropic agents. The resultant decision tree, which consisted of 28 branches and 15 leaves, identified RVAD(+) patients with 85% sensitivity, RVAD(-) patients with 83% specificity, and exhibited an area under the receiver operating characteristic curve of 0.87.
The decision tree model developed in this study exhibited several advantages compared with existing risk scores. Quantitatively, it provided improved prognosis of RV support by encoding the non-linear, synergic interactions among pre-operative variables. Because of its intuitive structure, it more closely mimics clinical reasoning and therefore can be more readily interpreted. Further development with additional multicenter, longitudinal data may provide a valuable prognostic tool for triage of LVAD therapy and, potentially, improve outcomes.
右心室(RV)衰竭是左心室辅助装置(LVAD)植入后的一个重要并发症。因此,提前识别高危患者非常重要。然而,源于多变量分析的预后模型的预测能力有限。
本研究回顾性分析了 1996 年 5 月至 2009 年 10 月期间 183 名 LVAD 接受者的记录;其中 27 名后来需要 RVAD(RVAD(+)),而 156 名仅在 LVAD 上(RVAD(-)),直到移植或死亡。构建了一个决策树模型来表示预测 RVAD 支持需求的术前数据的组合非线性关系。
确定了一组 8 个术前变量:肺跨压、年龄、右心房压力、国际标准化比值、心率、白细胞计数、丙氨酸氨基转移酶和正性肌力药物的数量。由此产生的决策树由 28 个分支和 15 个叶组成,以 85%的敏感性识别 RVAD(+)患者,以 83%的特异性识别 RVAD(-)患者,并且显示出 0.87 的接收器操作特征曲线下面积。
与现有风险评分相比,本研究开发的决策树模型具有几个优势。在定量方面,它通过编码术前变量之间的非线性协同相互作用,提供了 RV 支持的预后改善。由于其直观的结构,它更接近模拟临床推理,因此更容易解释。进一步的研究与额外的多中心、纵向数据相结合,可能为 LVAD 治疗的分诊提供一个有价值的预后工具,并可能改善结果。