Suppr超能文献

应用定量构效关系预测酸性药物的稳态分布容积。

Prediction of steady-state volume of distribution of acidic drugs by quantitative structure-pharmacokinetics relationships.

机构信息

Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria.

出版信息

J Pharm Sci. 2012 Mar;101(3):1253-66. doi: 10.1002/jps.22819. Epub 2011 Dec 13.

Abstract

The volume of distribution (VD) is one of the most important pharmacokinetic parameters of drugs. The present study employs quantitative structure-pharmacokinetics relationships (QSPkR) to derive models for VD prediction of acidic drugs. The steady-state volume of distribution (VD(ss)) values of 132 acidic drugs were collected, the chemical structures were described by 178 molecular descriptors, and QSPkR models were derived after variable selection by genetic algorithm and stepwise regression. Models were validated by cross-validation procedures and external test set. According to the molecular descriptors selected as the most predictive for VD(ss), the presence of seven- and nine-member cycles, atom type P(5+), SH groups, and large nonionized substituents increase the VD(ss), whereas atom types S(2+) and S(4+) and polar ionized substituents decrease it. Cross-validation and external validation studies on the QSPkR models derived in the present study showed good predictive ability with mean fold error values ranging from 1.58 (cross-validation) to 2.25 (external validation). The model performance is comparable to more complicated methods requiring in vitro or in vivo experiments and superior to the existing QSPkR models concerning acidic drugs. Apart from the prediction of VD in human, present models are also useful as a curator of available pharmacokinetic databases.

摘要

分布容积(VD)是药物最重要的药代动力学参数之一。本研究采用定量构效关系(QSPkR)来建立预测酸性药物 VD 的模型。收集了 132 种酸性药物的稳态分布容积(VD(ss))值,用 178 个分子描述符描述其化学结构,通过遗传算法和逐步回归进行变量选择后得出 QSPkR 模型。通过交叉验证程序和外部测试集对模型进行验证。根据所选的最能预测 VD(ss)的分子描述符,存在七元和九元环、原子类型 P(5+)、SH 基团和大的非电离取代基会增加 VD(ss),而原子类型 S(2+)和 S(4+)和极性电离取代基则会降低 VD(ss)。本研究中得出的 QSPkR 模型的交叉验证和外部验证研究表明,其具有良好的预测能力,平均折叠误差值范围为 1.58(交叉验证)至 2.25(外部验证)。该模型的性能与需要进行体外或体内实验的更复杂方法相当,并且优于现有的关于酸性药物的 QSPkR 模型。除了预测人体中的 VD 外,目前的模型还可用作可用药代动力学数据库的管理员。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验