Suppr超能文献

使用多元回归分析从动物数据和分子结构参数预测人体药代动力学:稳态分布容积

Prediction of human pharmacokinetics from animal data and molecular structural parameters using multivariate regression analysis: volume of distribution at steady state.

作者信息

Wajima Toshihiro, Fukumura Kazuya, Yano Yoshitaka, Oguma Takayoshi

机构信息

Developmental Research Laboratories, Shionogi & Co., Ltd, Sagisu 5-12-4, Fukushima-ku, Osaka 553-0002, Japan.

出版信息

J Pharm Pharmacol. 2003 Jul;55(7):939-49. doi: 10.1211/0022357021477.

Abstract

The aim of this study was to develop a regression equation for predicting volume of distribution at steady state (Vd(ss)) in humans to enable application to various types of drugs using animal experimental data for rats and dogs and some molecular structural parameters. The Vd(ss) data for rats, dogs and humans of 64 drugs were obtained from literature. The compounds have various structures, pharmacological activities and pharmacokinetic characteristics. In addition, the molecular weight, calculated partition coefficient (clogP), and the number of hydrogen bond acceptors were used as possible descriptors related to the Vd(ss) in humans. Multivariate regression analyses, multiple linear regression analysis and the partial least squares (PLS) method were used to predict Vd(ss) in humans. Interaction terms were also introduced into the regression analysis to evaluate the non-linear relationship. For the data set used in the present study, PLS with quadratic term descriptors gave the best predictive performance. The PLS model using Vd(ss) data for only two animal species and using easily calculated structural parameters could generally predict Vd(ss) in humans better than an allometric method. In addition, the PLS model with only animal data gave almost the same predictive performance as the PLS model with quadratic term descriptors. This model may be easier to use and be practical in a realistic situation, and could predict Vd(ss) in humans better than the allometric method.

摘要

本研究的目的是开发一种回归方程,用于预测人体稳态分布容积(Vd(ss)),以便利用大鼠和犬的动物实验数据以及一些分子结构参数,将其应用于各类药物。从文献中获取了64种药物在大鼠、犬和人体中的Vd(ss)数据。这些化合物具有各种结构、药理活性和药代动力学特征。此外,分子量、计算得到的分配系数(clogP)以及氢键受体数量被用作与人体Vd(ss)相关的可能描述符。采用多元回归分析、多元线性回归分析和偏最小二乘法(PLS)来预测人体的Vd(ss)。还将交互项引入回归分析以评估非线性关系。对于本研究中使用的数据集,带有二次项描述符的PLS具有最佳的预测性能。仅使用两种动物物种的Vd(ss)数据并使用易于计算的结构参数的PLS模型,通常比异速生长法能更好地预测人体的Vd(ss)。此外,仅使用动物数据的PLS模型与带有二次项描述符的PLS模型具有几乎相同的预测性能。该模型可能更易于使用且在实际情况中具有实用性,并且比异速生长法能更好地预测人体的Vd(ss)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验