Suppr超能文献

蛋白质中半胱氨酸二硫键结合状态的预测。

Prediction of the disulfide-bonding state of cysteine in proteins.

作者信息

Muskal S M, Holbrook S R, Kim S H

机构信息

Department of Chemistry, University of California, Berkeley 94720.

出版信息

Protein Eng. 1990 Aug;3(8):667-72. doi: 10.1093/protein/3.8.667.

Abstract

The bonding states of cysteine play important functional and structural roles in proteins. In particular, disulfide bond formation is one of the most important factors influencing the three-dimensional fold of proteins. Proteins of known structure were used to teach computer-simulated neural networks rules for predicting the disulfide-bonding state of a cysteine given only its flanking amino acid sequence. Resulting networks make accurate predictions on sequences different from those used in training, suggesting that local sequence greatly influences cysteines in disulfide bond formation. The average prediction rate after seven independent network experiments is 81.4% for disulfide-bonded and 80.0% for non-disulfide-bonded scenarios. Predictive accuracy is related to the strength of network output activities. Network weights reveal interesting position-dependent amino acid preferences and provide a physical basis for understanding the correlation between the flanking sequence and a cysteine's disulfide-bonding state. Network predictions may be used to increase or decrease the stability of existing disulfide bonds or to aid the search for potential sites to introduce new disulfide bonds.

摘要

半胱氨酸的键合状态在蛋白质中发挥着重要的功能和结构作用。特别是,二硫键的形成是影响蛋白质三维折叠的最重要因素之一。利用已知结构的蛋白质来训练计算机模拟神经网络,使其掌握仅根据半胱氨酸侧翼氨基酸序列预测其二硫键合状态的规则。所得网络能够对与训练中使用的序列不同的序列做出准确预测,这表明局部序列在二硫键形成过程中对半胱氨酸有很大影响。在七次独立的网络实验后,对于二硫键合情况,平均预测率为81.4%,对于非二硫键合情况,平均预测率为80.0%。预测准确性与网络输出活动的强度相关。网络权重揭示了有趣的位置依赖性氨基酸偏好,并为理解侧翼序列与半胱氨酸二硫键合状态之间的相关性提供了物理基础。网络预测可用于增加或降低现有二硫键的稳定性,或有助于寻找引入新二硫键的潜在位点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验