National Institute for Materials Science, Tsukuba, Japan.
J Phys Condens Matter. 2012 Jan 18;24(2):024221. doi: 10.1088/0953-8984/24/2/024221. Epub 2011 Dec 15.
We have studied current-driven dynamics of domain walls when an in-plane magnetic field is present in perpendicularly magnetized nanowires using an analytical model and micromagnetic simulations. We model an experimentally studied system, ultrathin magnetic nanowires with perpendicular anisotropy, where an effective in-plane magnetic field is developed when current is passed along the nanowire due to the Rashba-like spin-orbit coupling. Using a one-dimensional model of a domain wall together with micromagnetic simulations, we show that the existence of such in-plane magnetic fields can either lower or raise the threshold current needed to cause domain wall motion. In the presence of the in-plane field, the threshold current differs for positive and negative currents for a given wall chirality, and the wall motion becomes sensitive to out-of-plane magnetic fields. We show that large non-adiabatic spin torque can counteract the effect of the in-plane field.
我们使用解析模型和微磁模拟研究了存在面内磁场时,各向异性垂直磁化纳米线中畴壁的电流驱动动力学。我们对一个经过实验研究的系统进行建模,该系统由具有垂直各向异性的超薄磁性纳米线组成,当电流沿纳米线流动时,由于类 Rashba 自旋轨道耦合,会产生一个有效的面内磁场。我们使用畴壁的一维模型和微磁模拟表明,这种面内磁场的存在可以降低或提高导致畴壁运动所需的阈值电流。在面内磁场存在的情况下,对于给定的壁手性,正电流和负电流的阈值电流不同,并且壁运动对平面外磁场变得敏感。我们表明,大的非绝热自旋扭矩可以抵消面内磁场的影响。