School of Chemistry, University of Melbourne, Victoria 3010, Australia.
Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):47-52. doi: 10.1073/pnas.1116227108. Epub 2011 Dec 15.
Radiolabeled diacetylbis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] is an effective positron-emission tomography imaging agent for myocardial ischemia, hypoxic tumors, and brain disorders with regionalized oxidative stress, such as mitochondrial myopathy, encephalopathy, and lactic acidosis with stroke-like episodes (MELAS) and Parkinson's disease. An excessively elevated reductive state is common to these conditions and has been proposed as an important mechanism affecting cellular retention of Cu from Cu(II)(atsm). However, data from whole-cell models to demonstrate this mechanism have not yet been provided. The present study used a unique cell culture model, mitochondrial xenocybrids, to provide whole-cell mechanistic data on cellular retention of Cu from Cu(II)(atsm). Genetic incompatibility between nuclear and mitochondrial encoded subunits of the mitochondrial electron transport chain (ETC) in xenocybrid cells compromises normal function of the ETC. As a consequence of this impairment to the ETC we show xenocybrid cells upregulate glycolytic ATP production and accumulate NADH. Compared to control cells the xenocybrid cells retained more Cu after being treated with Cu(II)(atsm). By transfecting the cells with a metal-responsive element reporter construct the increase in Cu retention was shown to involve a Cu(II)(atsm)-induced increase in intracellular bioavailable Cu specifically within the xenocybrid cells. Parallel experiments using cells grown under hypoxic conditions confirmed that a compromised ETC and elevated NADH levels contribute to increased cellular retention of Cu from Cu(II)(atsm). Using these cell culture models our data demonstrate that compromised ETC function, due to the absence of O(2) as the terminal electron acceptor or dysfunction of individual components of the ETC, is an important determinant in driving the intracellular dissociation of Cu(II)(atsm) that increases cellular retention of the Cu.
放射性标记二乙酰双(4-甲基硫代半胱氨酸)铜(II)[Cu(II)(atsm)]是一种有效的正电子发射断层扫描成像剂,可用于心肌缺血、缺氧肿瘤和伴有区域性氧化应激的脑疾病,如线粒体肌病、脑病、乳酸酸中毒伴中风样发作(MELAS)和帕金森病。这些疾病的还原状态过高,被认为是影响细胞从 Cu(II)(atsm)中保留 Cu 的重要机制。然而,尚未提供来自全细胞模型的数据来证明这种机制。本研究使用独特的细胞培养模型,即线粒体异种细胞,提供了有关细胞从 Cu(II)(atsm)中保留 Cu 的全细胞机制数据。异种细胞中线粒体电子传递链(ETC)的核和线粒体编码亚基之间的遗传不兼容会损害 ETC 的正常功能。由于这种对 ETC 的损害,我们发现异种细胞上调糖酵解 ATP 产生并积累 NADH。与对照细胞相比,在用 Cu(II)(atsm)处理后,异种细胞保留了更多的 Cu。通过将金属反应元件报告基因构建体转染细胞,表明 Cu 保留的增加涉及 Cu(II)(atsm)诱导的细胞内生物可利用 Cu 的增加,特别是在异种细胞内。使用在低氧条件下生长的细胞进行的平行实验证实,ETC 受损和 NADH 水平升高导致从 Cu(II)(atsm)中增加细胞内 Cu 的保留。使用这些细胞培养模型,我们的数据表明,由于缺乏 O(2)作为末端电子受体或 ETC 单个成分的功能障碍,ETC 功能受损是驱动 Cu(II)(atsm)细胞内解离的重要决定因素,从而增加细胞内 Cu 的保留。