Suppr超能文献

癌症中与临床数据相关的突变子网的发现。

Discovery of mutated subnetworks associated with clinical data in cancer.

作者信息

Vandin Fabio, Clay Patrick, Upfal Eli, Raphael Benjamin J

机构信息

Department of Computer Science, and Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA.

出版信息

Pac Symp Biocomput. 2012:55-66.

Abstract

A major goal of cancer sequencing projects is to identify genetic alterations that determine clinical phenotypes, such as survival time or drug response. Somatic mutations in cancer are typically very diverse, and are found in different sets of genes in different patients. This mutational heterogeneity complicates the discovery of associations between individual mutations and a clinical phenotype. This mutational heterogeneity is explained in part by the fact that driver mutations, the somatic mutations that drive cancer development, target genes in cellular pathways, and only a subset of pathway genes is mutated in a given patient. Thus, pathway-based analysis of associations between mutations and phenotype are warranted. Here, we introduce an algorithm to find groups of genes, or pathways, whose mutational status is associated to a clinical phenotype without prior definition of the pathways. Rather, we find subnetworks of genes in an gene interaction network with the property that the mutational status of the genes in the subnetwork are significantly associated with a clinical phenotype. This new algorithm is built upon HotNet, an algorithm that finds groups of mutated genes using a heat diffusion model and a two-stage statistical test. We focus here on discovery of statistically significant correlations between mutated subnetworks and patient survival data. A similar approach can be used for correlations with other types of clinical data, through use of an appropriate statistical test. We apply our method to simulated data as well as to mutation and survival data from ovarian cancer samples from The Cancer Genome Atlas. In the TCGA data, we discover nine subnetworks containing genes whose mutational status is correlated with survival. Genes in four of these subnetworks overlap known pathways, including the focal adhesion and cell adhesion pathways, while other subnetworks are novel.

摘要

癌症测序项目的一个主要目标是识别决定临床表型的基因改变,如生存时间或药物反应。癌症中的体细胞突变通常非常多样,且在不同患者的不同基因集中被发现。这种突变异质性使得发现单个突变与临床表型之间的关联变得复杂。这种突变异质性部分可以通过以下事实来解释:驱动突变,即驱动癌症发展的体细胞突变,靶向细胞通路中的基因,并且在给定患者中只有一部分通路基因发生突变。因此,基于通路分析突变与表型之间的关联是有必要的。在此,我们引入一种算法来寻找基因组或通路,其突变状态与临床表型相关,而无需事先定义通路。相反,我们在基因相互作用网络中找到基因子网,其特性是子网中基因的突变状态与临床表型显著相关。这种新算法基于HotNet构建,HotNet是一种使用热扩散模型和两阶段统计检验来寻找突变基因组的算法。我们在此专注于发现突变子网与患者生存数据之间的统计学显著相关性。通过使用适当的统计检验,类似的方法可用于与其他类型临床数据的相关性分析。我们将我们的方法应用于模拟数据以及来自癌症基因组图谱的卵巢癌样本的突变和生存数据。在TCGA数据中,我们发现了九个包含与生存相关的突变基因的子网。其中四个子网中的基因与已知通路重叠,包括粘着斑和细胞粘附通路,而其他子网是新发现的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验