Suppr超能文献

在贝叶斯框架下通过构象的最优选择高效构建无序蛋白质集合。

Efficient construction of disordered protein ensembles in a Bayesian framework with optimal selection of conformations.

作者信息

Fisher Charles K, Ullman Orly, Stultz Collin M

机构信息

Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, Massachusetts 02139-4307, United States.

出版信息

Pac Symp Biocomput. 2012:82-93.

Abstract

Constructing an accurate model for the thermally accessible states of an Intrinsically Disordered Protein (IDP) is a fundamental problem in structural biology. This problem requires one to consider a large number of conformations in order to ensure that the model adequately represents the range of structures that the protein can adopt. Typically, one samples a wide range of structures in an attempt to obtain an ensemble that agrees with some pre-specified set of experimental data. However, models that contain more structures than the available experimental restraints are problematic as the large number of degrees of freedom in the ensemble leads to considerable uncertainty in the final model. We introduce a computationally efficient algorithm called Variational Bayesian Weighting with Structure Selection (VBWSS) for constructing a model for the ensemble of an IDP that contains a minimal number of conformations and, simultaneously, provides estimates for the uncertainty in properties calculated from the model. The algorithm is validated using reference ensembles and applied to construct an ensemble for the 140-residue IDP, monomeric α- synuclein.

摘要

构建内在无序蛋白质(IDP)热可及状态的精确模型是结构生物学中的一个基本问题。这个问题要求人们考虑大量的构象,以确保模型能充分代表蛋白质可以采用的结构范围。通常,人们会对广泛的结构进行采样,试图获得一个与某些预先指定的实验数据集相符的集合。然而,包含比可用实验约束更多结构的模型存在问题,因为集合中的大量自由度会导致最终模型存在相当大的不确定性。我们引入了一种计算效率高的算法,称为带结构选择的变分贝叶斯加权(VBWSS),用于构建IDP集合的模型,该模型包含最少数量的构象,同时还能为根据模型计算的属性不确定性提供估计。该算法使用参考集合进行了验证,并应用于构建140个残基的IDP单体α-突触核蛋白的集合。

相似文献

2
Analyzing Ensembles of Amyloid Proteins Using Bayesian Statistics.
Methods Mol Biol. 2016;1345:269-80. doi: 10.1007/978-1-4939-2978-8_17.
3
Modeling intrinsically disordered proteins with bayesian statistics.
J Am Chem Soc. 2010 Oct 27;132(42):14919-27. doi: 10.1021/ja105832g.
4
Constructing Structure Ensembles of Intrinsically Disordered Proteins from Chemical Shift Data.
J Comput Biol. 2016 May;23(5):300-10. doi: 10.1089/cmb.2015.0184.
5
Explaining the structural plasticity of α-synuclein.
J Am Chem Soc. 2011 Dec 7;133(48):19536-46. doi: 10.1021/ja208657z. Epub 2011 Nov 14.
6
Ensemble modeling of protein disordered states: experimental restraint contributions and validation.
Proteins. 2012 Feb;80(2):556-72. doi: 10.1002/prot.23220. Epub 2011 Nov 17.
7
Experimental Inferential Structure Determination of Ensembles for Intrinsically Disordered Proteins.
J Am Chem Soc. 2016 Apr 6;138(13):4530-8. doi: 10.1021/jacs.6b00351. Epub 2016 Mar 25.
8
Constructing ensembles for intrinsically disordered proteins.
Curr Opin Struct Biol. 2011 Jun;21(3):426-31. doi: 10.1016/j.sbi.2011.04.001. Epub 2011 Apr 27.
9
Bayesian inference of protein ensembles from SAXS data.
Phys Chem Chem Phys. 2016 Feb 17;18(8):5832-8. doi: 10.1039/c5cp04886a.

引用本文的文献

2
Reweighting methods for elucidation of conformation ensembles of proteins.
Curr Opin Struct Biol. 2022 Dec;77:102470. doi: 10.1016/j.sbi.2022.102470. Epub 2022 Sep 29.
3
IDPConformerGenerator: A Flexible Software Suite for Sampling the Conformational Space of Disordered Protein States.
J Phys Chem A. 2022 Sep 8;126(35):5985-6003. doi: 10.1021/acs.jpca.2c03726. Epub 2022 Aug 28.
4
Inference of Joint Conformational Distributions from Separately Acquired Experimental Measurements.
J Phys Chem Lett. 2021 Feb 18;12(6):1606-1611. doi: 10.1021/acs.jpclett.0c03623. Epub 2021 Feb 8.
6
Bayesian inference of protein conformational ensembles from limited structural data.
PLoS Comput Biol. 2018 Dec 17;14(12):e1006641. doi: 10.1371/journal.pcbi.1006641. eCollection 2018 Dec.
7
Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling.
Chem Rev. 2016 Jun 8;116(11):6424-62. doi: 10.1021/acs.chemrev.5b00548. Epub 2016 Feb 29.
8
Bayesian energy landscape tilting: towards concordant models of molecular ensembles.
Biophys J. 2014 Mar 18;106(6):1381-90. doi: 10.1016/j.bpj.2014.02.009.
9
Conformational Dynamics of the Partially Disordered Yeast Transcription Factor GCN4.
J Chem Theory Comput. 2013 Nov 1;9(11). doi: 10.1021/ct400654r.
10
Comparative studies of disordered proteins with similar sequences: application to Aβ40 and Aβ42.
Biophys J. 2013 Apr 2;104(7):1546-55. doi: 10.1016/j.bpj.2013.02.023.

本文引用的文献

1
α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation.
Nature. 2011 Aug 14;477(7362):107-10. doi: 10.1038/nature10324.
2
Constructing ensembles for intrinsically disordered proteins.
Curr Opin Struct Biol. 2011 Jun;21(3):426-31. doi: 10.1016/j.sbi.2011.04.001. Epub 2011 Apr 27.
4
Segmental conformational disorder and dynamics in the intrinsically disordered protein α-synuclein and its chain length dependence.
J Mol Biol. 2011 Feb 4;405(5):1267-83. doi: 10.1016/j.jmb.2010.11.011. Epub 2010 Nov 23.
5
An invariant form for the prior probability in estimation problems.
Proc R Soc Lond A Math Phys Sci. 1946;186(1007):453-61. doi: 10.1098/rspa.1946.0056.
6
Modeling intrinsically disordered proteins with bayesian statistics.
J Am Chem Soc. 2010 Oct 27;132(42):14919-27. doi: 10.1021/ja105832g.
7
Intrinsically disordered proteins are potential drug targets.
Curr Opin Chem Biol. 2010 Aug;14(4):481-8. doi: 10.1016/j.cbpa.2010.06.169. Epub 2010 Jul 2.
8
NMR characterization of long-range order in intrinsically disordered proteins.
J Am Chem Soc. 2010 Jun 23;132(24):8407-18. doi: 10.1021/ja101645g.
10
Parkinson's disease.
Lancet. 2009 Jun 13;373(9680):2055-66. doi: 10.1016/S0140-6736(09)60492-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验