Suppr超能文献

液泡 Qabc- 和 R-SNARE 蛋白对膜融合特异性的独特贡献。

Distinct contributions of vacuolar Qabc- and R-SNARE proteins to membrane fusion specificity.

机构信息

Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.

出版信息

J Biol Chem. 2012 Jan 27;287(5):3445-53. doi: 10.1074/jbc.M111.307439. Epub 2011 Dec 15.

Abstract

In eukaryotic endomembrane systems, Qabc-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) on one membrane and R-SNARE on the opposing membrane assemble into a trans-QabcR-SNARE complex to drive membrane fusion. However, it remains ambiguous whether pairing of Qabc- and R-SNAREs mediates membrane fusion specificity. Here, we explored the fusion specificity of reconstituted proteoliposomes bearing purified SNAREs in yeast vacuoles and other organelles. We found that not only vacuolar R-SNARE Nyv1p but also the non-cognate R-SNAREs, endosomal Snc2p, and endoplasmic reticulum-Golgi Sec22p caused efficient fusion with vacuolar Qabc-SNAREs. In contrast, their fusion is blocked completely by replacing vacuolar Qc-SNARE Vam7p with the non-cognate endosomal Tlg1p and Syn8p, although these endosomal Qc-SNAREs fully retained the ability to form cis-SNARE complexes with vacuolar SNAREs in solution and on membranes. Thus, our current study establishes that an appropriate assembly of Qabc-SNAREs is crucial for regulating fusion specificity, whereas R-SNARE itself has little contribution to specificity.

摘要

在真核内体膜系统中,一个膜上的 Qabc-SNARE(可溶性 N-乙基马来酰亚胺敏感因子附着蛋白受体)和对面膜上的 R-SNARE 组装成跨 QabcR-SNARE 复合物,以驱动膜融合。然而,配对的 Qabc-和 R-SNARE 是否介导膜融合特异性仍然不清楚。在这里,我们在酵母液泡和其他细胞器中用纯化的 SNARE 重建了蛋白脂质体,探索了其融合特异性。我们发现,不仅液泡 R-SNARE Nyv1p,而且非同源 R-SNAREs,内体 Snc2p 和内质网-高尔基体 Sec22p 也能与液泡 Qabc-SNARE 有效融合。相比之下,尽管这些内体 Qc-SNAREs在溶液中和膜上完全保留了与液泡 SNARE 形成顺式 SNARE 复合物的能力,但用非同源内体 Tlg1p 和 Syn8p 取代液泡 Qc-SNARE Vam7p 会完全阻止它们的融合。因此,我们目前的研究确立了 Qabc-SNARE 的适当组装对于调节融合特异性至关重要,而 R-SNARE 本身对特异性几乎没有贡献。

相似文献

1
Distinct contributions of vacuolar Qabc- and R-SNARE proteins to membrane fusion specificity.
J Biol Chem. 2012 Jan 27;287(5):3445-53. doi: 10.1074/jbc.M111.307439. Epub 2011 Dec 15.
3
Sec18p and Vam7p remodel trans-SNARE complexes to permit a lipid-anchored R-SNARE to support yeast vacuole fusion.
EMBO J. 2007 Dec 12;26(24):4935-45. doi: 10.1038/sj.emboj.7601915. Epub 2007 Nov 15.
5
Homotypic vacuolar fusion mediated by t- and v-SNAREs.
Nature. 1997 May 8;387(6629):199-202. doi: 10.1038/387199a0.
6
Ykt6 functionally overlaps with vacuolar and exocytic R-SNAREs in the yeast Saccharomyces cerevisiae.
J Biol Chem. 2024 May;300(5):107274. doi: 10.1016/j.jbc.2024.107274. Epub 2024 Apr 6.
7
Sec17 (α-SNAP) and Sec18 (NSF) restrict membrane fusion to R-SNAREs, Q-SNAREs, and SM proteins from identical compartments.
Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23573-23581. doi: 10.1073/pnas.1913985116. Epub 2019 Nov 4.
8
The specificity of SNARE-dependent fusion is encoded in the SNARE motif.
Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3376-80. doi: 10.1073/pnas.0400271101. Epub 2004 Feb 23.
10
Compartmental specificity of cellular membrane fusion encoded in SNARE proteins.
Nature. 2000 Sep 14;407(6801):153-9. doi: 10.1038/35025000.

引用本文的文献

1
The clues offered by SNAREs on the vacuoles of plants and animals.
Front Plant Sci. 2025 Jun 23;16:1599323. doi: 10.3389/fpls.2025.1599323. eCollection 2025.
3
After their membrane assembly, Sec18 (NSF) and Sec17 (SNAP) promote membrane fusion.
Mol Biol Cell. 2024 Dec 1;35(12):ar150. doi: 10.1091/mbc.E24-10-0439. Epub 2024 Oct 30.
4
A look beyond the QR code of SNARE proteins.
Protein Sci. 2024 Sep;33(9):e5158. doi: 10.1002/pro.5158.
6
Membrane Tethering Potency of Rab-Family Small GTPases Is Defined by the C-Terminal Hypervariable Regions.
Front Cell Dev Biol. 2020 Sep 30;8:577342. doi: 10.3389/fcell.2020.577342. eCollection 2020.
7
Asymmetric Rab activation of vacuolar HOPS to catalyze SNARE complex assembly.
Mol Biol Cell. 2020 May 1;31(10):1060-1068. doi: 10.1091/mbc.E20-01-0019. Epub 2020 Mar 11.
9
Homotypic and heterotypic -assembly of human Rab-family small GTPases in reconstituted membrane tethering.
J Biol Chem. 2019 May 10;294(19):7722-7739. doi: 10.1074/jbc.RA119.007947. Epub 2019 Mar 25.
10
Reconstitution of membrane tethering mediated by Rab-family small GTPases.
Biophys Rev. 2018 Apr;10(2):543-549. doi: 10.1007/s12551-017-0358-3. Epub 2017 Dec 4.

本文引用的文献

1
Phosphoinositides function asymmetrically for membrane fusion, promoting tethering and 3Q-SNARE subcomplex assembly.
J Biol Chem. 2010 Dec 10;285(50):39359-65. doi: 10.1074/jbc.M110.183111. Epub 2010 Oct 11.
3
At the junction of SNARE and SM protein function.
Curr Opin Cell Biol. 2010 Aug;22(4):488-95. doi: 10.1016/j.ceb.2010.04.006. Epub 2010 May 12.
4
HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly.
Mol Biol Cell. 2010 Jul 1;21(13):2297-305. doi: 10.1091/mbc.e10-01-0044. Epub 2010 May 12.
5
Phosphoinositides and SNARE chaperones synergistically assemble and remodel SNARE complexes for membrane fusion.
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16191-6. doi: 10.1073/pnas.0908694106. Epub 2009 Sep 4.
6
Complex lipid requirements for SNARE- and SNARE chaperone-dependent membrane fusion.
J Biol Chem. 2009 Oct 2;284(40):27114-22. doi: 10.1074/jbc.M109.010223. Epub 2009 Aug 4.
7
Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones.
EMBO J. 2008 Aug 6;27(15):2031-42. doi: 10.1038/emboj.2008.139. Epub 2008 Jul 24.
8
Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion.
J Cell Biol. 2008 Jul 28;182(2):355-66. doi: 10.1083/jcb.200801056. Epub 2008 Jul 21.
9
Membrane fusion.
Nat Struct Mol Biol. 2008 Jul;15(7):658-64. doi: 10.1038/nsmb.1451.
10
Yeast vacuole fusion: a model system for eukaryotic endomembrane dynamics.
Autophagy. 2008 Jan;4(1):5-19. doi: 10.4161/auto.5054. Epub 2007 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验