Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
PLoS One. 2011;6(12):e27216. doi: 10.1371/journal.pone.0027216. Epub 2011 Dec 12.
Single stranded DNA binding proteins (SSBs) are vital for the survival of organisms. Studies on SSBs from the prototype, Escherichia coli (EcoSSB) and, an important human pathogen, Mycobacterium tuberculosis (MtuSSB) had shown that despite significant variations in their quaternary structures, the DNA binding and oligomerization properties of the two are similar. Here, we used the X-ray crystal structure data of the two SSBs to design a series of chimeric proteins (mβ1, mβ1'β2, mβ1-β5, mβ1-β6 and mβ4-β5) by transplanting β1, β1'β2, β1-β5, β1-β6 and β4-β5 regions, respectively of the N-terminal (DNA binding) domain of MtuSSB for the corresponding sequences in EcoSSB. In addition, mβ1'β2(ESWR) SSB was generated by mutating the MtuSSB specific 'PRIY' sequence in the β2 strand of mβ1'β2 SSB to EcoSSB specific 'ESWR' sequence. Biochemical characterization revealed that except for mβ1 SSB, all chimeras and a control construct lacking the C-terminal domain (ΔC SSB) bound DNA in modes corresponding to limited and unlimited modes of binding. However, the DNA on MtuSSB may follow a different path than the EcoSSB. Structural probing by protease digestion revealed that unlike other SSBs used, mβ1 SSB was also hypersensitive to chymotrypsin treatment. Further, to check for their biological activities, we developed a sensitive assay, and observed that mβ1-β6, MtuSSB, mβ1'β2 and mβ1-β5 SSBs complemented E. coli Δssb in a dose dependent manner. Complementation by the mβ1-β5 SSB was poor. In contrast, mβ1'β2(ESWR) SSB complemented E. coli as well as EcoSSB. The inefficiently functioning SSBs resulted in an elongated cell/filamentation phenotype of E. coli. Taken together, our observations suggest that specific interactions within the DNA binding domain of the homotetrameric SSBs are crucial for their biological function.
单链 DNA 结合蛋白 (SSB) 对生物的生存至关重要。对原型大肠杆菌 (EcoSSB) 和重要的人类病原体结核分枝杆菌 (MtuSSB) 的 SSB 的研究表明,尽管它们的四级结构存在显著差异,但这两种蛋白的 DNA 结合和寡聚化特性相似。在这里,我们使用这两种 SSB 的 X 射线晶体结构数据,通过分别移植 MtuSSB N 端 (DNA 结合) 结构域中β1、β1'β2、β1-β5、β1-β6 和β4-β5 区域的相应序列,设计了一系列嵌合蛋白 (mβ1、mβ1'β2、mβ1-β5、mβ1-β6 和 mβ4-β5)。此外,通过将 mβ1'β2 SSB 中β2 链上的 MtuSSB 特异的'PRIY'序列突变为 EcoSSB 特异的'ESWR'序列,产生了 mβ1'β2(ESWR) SSB。生化特性分析表明,除了 mβ1 SSB 外,所有嵌合体和缺乏 C 端结构域的对照构建体 (ΔC SSB) 都以有限和无限结合模式结合 DNA。然而,MtuSSB 上的 DNA 可能遵循与 EcoSSB 不同的路径。蛋白酶消化的结构探测表明,与其他 SSB 不同,mβ1 SSB 也对糜蛋白酶处理高度敏感。此外,为了检查它们的生物活性,我们开发了一种敏感的测定法,观察到 mβ1-β6、MtuSSB、mβ1'β2 和 mβ1-β5 SSB 以剂量依赖的方式互补大肠杆菌 Δssb。mβ1-β5 SSB 的互补作用较差。相比之下,mβ1'β2(ESWR) SSB 也能互补大肠杆菌和 EcoSSB。功能效率低下的 SSB 导致大肠杆菌出现拉长的细胞/丝状表型。综上所述,我们的观察结果表明,同源四聚体 SSB 的 DNA 结合结构域内的特定相互作用对于它们的生物功能至关重要。