Leibniz Institute of Molecular Pharmacology FMP, Berlin, Germany.
Nat Protoc. 2010 Feb;5(2):267-81. doi: 10.1038/nprot.2009.182. Epub 2010 Jan 28.
We describe an intuitive and rapid procedure for analyzing experimental data by nonlinear least-squares fitting (NLSF) in the most widely used spreadsheet program. Experimental data in x/y form and data calculated from a regression equation are inputted and plotted in a Microsoft Excel worksheet, and the sum of squared residuals is computed and minimized using the Solver add-in to obtain the set of parameter values that best describes the experimental data. The confidence of best-fit values is then visualized and assessed in a generally applicable and easily comprehensible way. Every user familiar with the most basic functions of Excel will be able to implement this protocol, without previous experience in data fitting or programming and without additional costs for specialist software. The application of this tool is exemplified using the well-known Michaelis-Menten equation characterizing simple enzyme kinetics. Only slight modifications are required to adapt the protocol to virtually any other kind of dataset or regression equation. The entire protocol takes approximately 1 h.
我们描述了一种直观而快速的通过非线性最小二乘法拟合(NLSF)分析实验数据的方法,该方法可在最广泛使用的电子表格程序中使用。将以 x/y 形式输入的实验数据和从回归方程计算得出的数据输入并绘制到 Microsoft Excel 工作表中,使用“求解器”加载项计算并最小化平方残差之和,以获得最佳描述实验数据的参数值集。然后以一种普遍适用且易于理解的方式可视化和评估最佳拟合值的置信度。每个熟悉 Excel 最基本功能的用户都能够实现该协议,无需具有数据拟合或编程方面的先前经验,也无需为专业软件支付额外费用。该工具的应用通过一个著名的米氏方程来举例说明,该方程用于描述简单的酶动力学。只需进行一些细微的修改,就可以将该协议应用于几乎任何其他类型的数据集或回归方程。整个协议大约需要 1 小时。