Pharmacologie Fondamentale et Clinique de la Douleur, Clermont Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand, France U766, INSERM [National Institute of Health and Medical Research], F-63000 Clermont-Ferrand, France U870, IFR62, INSERM, Oullins, France UMR1235, INRA [National Institute for Agricultural Research], Oullins, France Université Lyon 1, Lyon, France UMR1019 Nutrition Humaine, INRA, CRNH Auvergne, F-63000 Clermont-Ferrand, France UMR1019 Nutrition Humaine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France U766, CIC 501, INSERM, F-63001 Clermont-Ferrand, France.
Pain. 2012 Mar;153(3):553-561. doi: 10.1016/j.pain.2011.11.019. Epub 2011 Dec 15.
Diabetes comorbidities include disabling peripheral neuropathy (DPN) and an increased risk of developing cancer. Antimitotic drugs, such as paclitaxel, are well known to facilitate the occurrence of peripheral neuropathy. Practitioners frequently observe the development or co-occurrence of enhanced DPN, especially cold sensitivity, in diabetic patients during chemotherapy. Preclinical studies showed that reactive oxygen species (ROS) and cold activate transient receptor potential ankyrin-1 (TRPA1) cation channels, which are involved in cold-evoked pain transduction signaling in DPN. Additionally, paclitaxel treatment has been associated with an accumulation of atypical mitochondria in the sensory nerves of rats. We hypothesized that paclitaxel might potentiate cold hyperalgesia by increasing mitochondrial injuries and TRPA1 activation. Thus, the kinetics of paclitaxel-induced cold hyperalgesia, mitochondrial ROS production, and TRPA1 expression were evaluated in dorsal root ganglia of normoglycemic and streptozotocin-induced diabetic rats. In diabetic rats, paclitaxel significantly enhanced cold hyperalgesia in comparison to normoglycemic paclitaxel-treated control rats. These effects were prevented by N-acetyl-cysteine, a reducing agent, and by HC030031, an antagonist of TRPA1. In diabetic and control rats, paclitaxel treatment was associated with an accumulation of atypical mitochondria and a 2-fold increase in mitochondrial ROS production. Moreover, mRNA levels of glutathione peroxidase 4 and glutathione-S-reductase were significantly lower in diabetic groups treated with paclitaxel. Finally, TRPA1 gene expression was enhanced by 45% in diabetic rats. Paclitaxel potentiation of cold hyperalgesia in diabetes may result from the combination of increased mitochondrial ROS production and poor radical detoxification induced by paclitaxel treatment and diabetes-related overexpression of TRPA1.
糖尿病合并症包括使人丧失能力的周围神经病变(DPN)和癌症风险增加。紫杉醇等抗有丝分裂药物众所周知可促进周围神经病变的发生。临床医生经常观察到糖尿病患者在化疗过程中出现或同时出现增强的 DPN,特别是对冷的敏感性。临床前研究表明,活性氧(ROS)和冷激活瞬时受体电位锚蛋白-1(TRPA1)阳离子通道,这些通道参与 DPN 中冷诱发疼痛转导信号。此外,紫杉醇治疗与大鼠感觉神经中异常线粒体的积累有关。我们假设紫杉醇可能通过增加线粒体损伤和 TRPA1 激活来增强冷超敏反应。因此,在正常血糖和链脲佐菌素诱导的糖尿病大鼠的背根神经节中评估了紫杉醇诱导的冷超敏反应、线粒体 ROS 产生和 TRPA1 表达的动力学。在糖尿病大鼠中,与正常血糖紫杉醇治疗的对照组大鼠相比,紫杉醇显著增强了冷超敏反应。这些作用被还原剂 N-乙酰半胱氨酸和 TRPA1 的拮抗剂 HC030031 阻止。在糖尿病和对照组大鼠中,紫杉醇治疗与异常线粒体的积累和线粒体 ROS 产生增加 2 倍有关。此外,用紫杉醇治疗的糖尿病组的谷胱甘肽过氧化物酶 4 和谷胱甘肽-S-转移酶的 mRNA 水平显著降低。最后,TRPA1 基因表达在糖尿病大鼠中增强了 45%。紫杉醇在糖尿病中增强冷超敏反应可能是由于紫杉醇治疗和糖尿病相关的 TRPA1 过表达引起的线粒体 ROS 产生增加和自由基解毒不良的组合所致。