Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA.
Curr Biol. 2012 Jan 10;22(1):21-7. doi: 10.1016/j.cub.2011.11.026. Epub 2011 Dec 15.
Insects maintain a constant bearing across a wide range of spatial scales. Monarch butterflies and locusts traverse continents [1, 2], and foraging bees and ants travel hundreds of meters to return to their nests [1, 3, 4], whereas many other insects fly straight for only a few centimeters before changing direction. Despite this variation in spatial scale, the brain region thought to underlie long-distance navigation is remarkably conserved [5, 6], suggesting that the use of a celestial compass is a general and perhaps ancient capability of insects. Laboratory studies of Drosophila have identified a local search mode in which short, straight segments are interspersed with rapid turns [7, 8]. However, this flight mode is inconsistent with measured gene flow between geographically separated populations [9-11], and individual Drosophila can travel 10 km across desert terrain in a single night [9, 12, 13]-a feat that would be impossible without prolonged periods of straight flight. To directly examine orientation behavior under outdoor conditions, we built a portable flight arena in which a fly viewed the natural sky through a liquid crystal device that could experimentally rotate the polarization angle. Our findings indicate that Drosophila actively orient using the sky's natural polarization pattern.
昆虫在广泛的空间尺度上保持恒定的方位。帝王蝶和蝗虫跨越大陆[1,2],觅食的蜜蜂和蚂蚁要走数百米才能回到巢穴[1,3,4],而许多其他昆虫在改变方向之前只能直飞几厘米。尽管在空间尺度上存在差异,但被认为是远距离导航基础的大脑区域却惊人地保守[5,6],这表明使用天罗盘是昆虫的一种普遍且可能古老的能力。对果蝇的实验室研究已经确定了一种局部搜索模式,其中短而直的片段与快速转弯交替出现[7,8]。然而,这种飞行模式与地理上分离的种群之间测量的基因流动不一致[9-11],而且单个果蝇可以在一个晚上穿越沙漠地形 10 公里[9,12,13]——如果没有长时间的直线飞行,这是不可能的。为了在户外条件下直接检查定向行为,我们构建了一个便携式飞行竞技场,其中苍蝇通过可以实验性地旋转偏振角的液晶设备观察自然天空。我们的研究结果表明,果蝇积极利用天空的自然偏振模式进行定向。