Suppr超能文献

一种结构基础可实现细菌的持续黏附:CFA/I 菌毛的生物力学特性。

A structural basis for sustained bacterial adhesion: biomechanical properties of CFA/I pili.

机构信息

Department of Physics, Umeå University, SE-901 87 Umeå, Sweden.

出版信息

J Mol Biol. 2012 Feb 3;415(5):918-28. doi: 10.1016/j.jmb.2011.12.006. Epub 2011 Dec 9.

Abstract

Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal disease worldwide. Adhesion pili (or fimbriae), such as the CFA/I (colonization factor antigen I) organelles that enable ETEC to attach efficiently to the host intestinal tract epithelium, are critical virulence factors for initiation of infection. We characterized the intrinsic biomechanical properties and kinetics of individual CFA/I pili at the single-organelle level, demonstrating that weak external forces (7.5 pN) are sufficient to unwind the intact helical filament of this prototypical ETEC pilus and that it quickly regains its original structure when the force is removed. While the general relationship between exertion of force and an increase in the filament length for CFA/I pili associated with diarrheal disease is analogous to that of P pili and type 1 pili, associated with urinary tract and other infections, the biomechanical properties of these different pili differ in key quantitative details. Unique features of CFA/I pili, including the significantly lower force required for unwinding, the higher extension speed at which the pili enter a dynamic range of unwinding, and the appearance of sudden force drops during unwinding, can be attributed to morphological features of CFA/I pili including weak layer-to-layer interactions between subunits on adjacent turns of the helix and the approximately horizontal orientation of pilin subunits with respect to the filament axis. Our results indicate that ETEC CFA/I pili are flexible organelles optimized to withstand harsh motion without breaking, resulting in continued attachment to the intestinal epithelium by the pathogenic bacteria that express these pili.

摘要

肠致病性大肠杆菌(ETEC)是全世界腹泻病的主要病因。黏附性菌毛(或纤毛),如使 ETEC 能够有效地附着到宿主肠道上皮的 CFA/I(定植因子抗原 I)器官,是引发感染的关键毒力因子。我们在单个细胞器水平上对 CFA/I 菌毛的固有生物力学特性和动力学进行了表征,证明了弱外力(7.5 pN)足以解开这种典型 ETEC 菌毛完整的螺旋丝,并且当力移除时它会迅速恢复其原始结构。虽然与腹泻病相关的 CFA/I 菌毛的力施加与细丝长度增加之间的一般关系类似于与尿路感染和其他感染相关的 P 菌毛和 1 型菌毛,但这些不同菌毛的生物力学特性在关键定量细节上有所不同。CFA/I 菌毛的独特特征,包括解开所需的力显著降低、菌毛进入动态解绕范围的更高延伸速度以及在解绕过程中突然出现力下降的现象,可归因于 CFA/I 菌毛的形态特征,包括相邻螺旋圈上亚基之间较弱的层间相互作用以及相对于纤维轴的菌毛亚基的近似水平取向。我们的研究结果表明,ETEC CFA/I 菌毛是柔性的细胞器,经过优化可在不受破坏的情况下承受苛刻的运动,从而使表达这些菌毛的致病性细菌能够继续附着在肠道上皮上。

相似文献

10
Cryo-EM structure of the CFA/I pilus rod.CFA/I菌毛杆的冷冻电镜结构
IUCrJ. 2019 Jul 9;6(Pt 5):815-821. doi: 10.1107/S2052252519007966. eCollection 2019 Sep 1.

引用本文的文献

1
Endospore pili: Flexible, stiff, and sticky nanofibers.芽孢菌毛:灵活、坚硬和粘性的纳米纤维。
Biophys J. 2023 Jul 11;122(13):2696-2706. doi: 10.1016/j.bpj.2023.05.024. Epub 2023 May 22.
4
Unveiling molecular interactions that stabilize bacterial adhesion pili.揭示稳定细菌黏附菌毛的分子相互作用。
Biophys J. 2022 Jun 7;121(11):2096-2106. doi: 10.1016/j.bpj.2022.04.036. Epub 2022 Apr 30.
7
Cryo-EM structure of the CFA/I pilus rod.CFA/I菌毛杆的冷冻电镜结构
IUCrJ. 2019 Jul 9;6(Pt 5):815-821. doi: 10.1107/S2052252519007966. eCollection 2019 Sep 1.

本文引用的文献

6
Structure of CFA/I fimbriae from enterotoxigenic Escherichia coli.产肠毒素大肠杆菌CFA/I菌毛的结构
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10793-8. doi: 10.1073/pnas.0812843106. Epub 2009 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验