Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India.
IEEE Trans Image Process. 2012 May;21(5):2798-811. doi: 10.1109/TIP.2011.2179664. Epub 2011 Dec 14.
Space-variantly blurred images of a scene contain valuable depth information. In this paper, our objective is to recover the 3-D structure of a scene from motion blur/optical defocus. In the proposed approach, the difference of blur between two observations is used as a cue for recovering depth, within a recursive state estimation framework. For motion blur, we use an unblurred-blurred image pair. Since the relationship between the observation and the scale factor of the point spread function associated with the depth at a point is nonlinear, we propose and develop a formulation of unscented Kalman filter for depth estimation. There are no restrictions on the shape of the blur kernel. Furthermore, within the same formulation, we address a special and challenging scenario of depth from defocus with translational jitter. The effectiveness of our approach is evaluated on synthetic as well as real data, and its performance is also compared with contemporary techniques.
场景的空间变化模糊图像包含有价值的深度信息。在本文中,我们的目标是从运动模糊/光学散焦中恢复场景的 3D 结构。在提出的方法中,利用两次观测之间的模糊差异作为恢复深度的线索,这是在递归状态估计框架内完成的。对于运动模糊,我们使用一对未模糊-模糊的图像。由于观测与与深度相关的点扩展函数的尺度因子之间的关系是非线性的,因此我们提出并开发了一种用于深度估计的无迹卡尔曼滤波器的公式。模糊核的形状没有限制。此外,在相同的公式中,我们还解决了具有平移抖动的离焦深度的特殊和具有挑战性的情况。我们的方法在合成和真实数据上进行了评估,并与当代技术进行了性能比较。