Suppr超能文献

基于无迹卡尔曼滤波器的运动景深和光学模糊估计。

Depth from motion and optical blur with an unscented Kalman filter.

机构信息

Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India.

出版信息

IEEE Trans Image Process. 2012 May;21(5):2798-811. doi: 10.1109/TIP.2011.2179664. Epub 2011 Dec 14.

Abstract

Space-variantly blurred images of a scene contain valuable depth information. In this paper, our objective is to recover the 3-D structure of a scene from motion blur/optical defocus. In the proposed approach, the difference of blur between two observations is used as a cue for recovering depth, within a recursive state estimation framework. For motion blur, we use an unblurred-blurred image pair. Since the relationship between the observation and the scale factor of the point spread function associated with the depth at a point is nonlinear, we propose and develop a formulation of unscented Kalman filter for depth estimation. There are no restrictions on the shape of the blur kernel. Furthermore, within the same formulation, we address a special and challenging scenario of depth from defocus with translational jitter. The effectiveness of our approach is evaluated on synthetic as well as real data, and its performance is also compared with contemporary techniques.

摘要

场景的空间变化模糊图像包含有价值的深度信息。在本文中,我们的目标是从运动模糊/光学散焦中恢复场景的 3D 结构。在提出的方法中,利用两次观测之间的模糊差异作为恢复深度的线索,这是在递归状态估计框架内完成的。对于运动模糊,我们使用一对未模糊-模糊的图像。由于观测与与深度相关的点扩展函数的尺度因子之间的关系是非线性的,因此我们提出并开发了一种用于深度估计的无迹卡尔曼滤波器的公式。模糊核的形状没有限制。此外,在相同的公式中,我们还解决了具有平移抖动的离焦深度的特殊和具有挑战性的情况。我们的方法在合成和真实数据上进行了评估,并与当代技术进行了性能比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验