Suppr超能文献

随机正则图上负权渗流模型的平均场行为

Mean-field behavior of the negative-weight percolation model on random regular graphs.

作者信息

Melchert Oliver, Hartmann Alexander K, Mézard Marc

机构信息

Institute of Physics, University of Oldenburg, D-26111 Oldenburg, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041106. doi: 10.1103/PhysRevE.84.041106. Epub 2011 Oct 7.

Abstract

We investigate both analytically and numerically the ensemble of minimum-weight loops in the negative-weight percolation model on random graphs with fixed connectivity and bimodal weight distribution. This allows us to study the mean-field behavior of this model. The analytical study is based on a conjectured equivalence with the problem of self-avoiding walks in a random medium. The numerical study is based on a mapping to a standard minimum-weight matching problem for which fast algorithms exist. Both approaches yield results that are in agreement on the location of the phase transition, on the value of critical exponents, and on the absence of any sizable indications of a glass phase. By these results, the previously conjectured upper critical dimension of d(u)=6 is confirmed.

摘要

我们通过解析和数值方法研究了具有固定连通性和双峰权重分布的随机图上负权重渗流模型中最小权重环的集合。这使我们能够研究该模型的平均场行为。解析研究基于与随机介质中自回避行走问题的推测等价性。数值研究基于与存在快速算法的标准最小权重匹配问题的映射。两种方法在相变位置、临界指数值以及不存在任何明显玻璃相迹象方面都得出了一致的结果。通过这些结果,先前推测的上临界维度d(u)=6得到了证实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验