Seto Ryohei, Botet Robert, Briesen Heiko
Chair for Process Systems Engineering, Technische Universität München, Weihenstephaner Steig 23, D-85350 Freising, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041405. doi: 10.1103/PhysRevE.84.041405. Epub 2011 Oct 31.
The hydrodynamic properties of rigid fractal aggregates have been investigated by considering their motion in shear flow in the Stokesian dynamics approach. Due to the high fluid viscosity and small particle inertia of colloidal systems, the total force and torque applied to the aggregate reach equilibrium values in a short time. Obtaining equilibrating motions for a number of independent samples, one can extract the average hydrodynamic characteristics of the given fractal aggregates. Despite the geometry of these objects being essentially disordered, the average drag-force distributions for aggregates show symmetric patterns. Moreover, these distributions collapse on a single master curve, characteristic of the nature of the aggregates, provided the positions of the particles are rescaled with the geometric radius of gyration. This result can be used to explain the reason why the stress acting on an aggregate and moments of the forces acting on contact points between particles follow power-law behaviors with the aggregate size. Moreover, the values of the exponents can be explained. As a consequence, considering cohesive force typical for colloidal particles, we find that even aggregates smaller than a few dozen particles must experience restructuring when typical shear flow is applied.
通过在斯托克斯动力学方法中考虑刚性分形聚集体在剪切流中的运动,对其流体动力学性质进行了研究。由于胶体系统的高流体粘度和小颗粒惯性,施加在聚集体上的总力和扭矩在短时间内达到平衡值。通过获取多个独立样本的平衡运动,可以提取给定分形聚集体的平均流体动力学特征。尽管这些物体的几何形状本质上是无序的,但聚集体的平均阻力分布呈现出对称模式。此外,只要颗粒的位置用几何回转半径进行重新缩放,这些分布就会汇聚到一条单一的主曲线上,这是聚集体性质的特征。这一结果可用于解释作用在聚集体上的应力以及作用在颗粒间接触点上的力的矩随聚集体尺寸呈幂律行为的原因。此外,还可以解释指数的值。因此,考虑到胶体颗粒典型的内聚力,我们发现,当施加典型的剪切流时,即使小于几十颗粒子的聚集体也必须经历重组。