Suppr超能文献

群体感应的简单模型:非线性动力学分析

Simple models for quorum sensing: nonlinear dynamical analysis.

作者信息

Chiang Wei-Yin, Li Yue-Xian, Lai Pik-Yin

机构信息

Department of Physics, Graduate Institute of Biophysics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, Republic of China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041921. doi: 10.1103/PhysRevE.84.041921. Epub 2011 Oct 18.

Abstract

Quorum sensing refers to the change in the cooperative behavior of a collection of elements in response to the change in their population size or density. This behavior can be observed in chemical and biological systems. These elements or cells are coupled via chemicals in the surrounding environment. Here we focus on the change of dynamical behavior, in particular from quiescent to oscillatory, as the cell population changes. For instance, the silent behavior of the elements can become oscillatory as the system concentration or population increases. In this work, two simple models are constructed that can produce the essential representative properties in quorum sensing. The first is an excitable or oscillatory phase model, which is probably the simplest model one can construct to describe quorum sensing. Using the mean-field approximation, the parameter regime for quorum sensing behavior can be identified, and analytical results for the detailed dynamical properties, including the phase diagrams, are obtained and verified numerically. The second model consists of FitzHugh-Nagumo elements coupled to the signaling chemicals in the environment. Nonlinear dynamical analysis of this mean-field model exhibits rich dynamical behaviors, such as infinite period bifurcation, supercritical Hopf, fold bifurcation, and subcritical Hopf bifurcations as the population parameter changes for different coupling strengths. Analytical result is obtained for the Hopf bifurcation phase boundary. Furthermore, two elements coupled via the environment and their synchronization behavior for these two models are also investigated. For both models, it is found that the onset of oscillations is accompanied by the synchronized dynamics of the two elements. Possible applications and extension of these models are also discussed.

摘要

群体感应是指一组元素的合作行为随其种群大小或密度的变化而发生改变。这种行为在化学和生物系统中都能观察到。这些元素或细胞通过周围环境中的化学物质相互耦合。在这里,我们关注随着细胞群体的变化,动力学行为的改变,特别是从静止状态到振荡状态的转变。例如,随着系统浓度或群体数量的增加,元素的静止行为可能会变成振荡行为。在这项工作中,构建了两个简单的模型,它们可以产生群体感应中的基本代表性特性。第一个是可激发或振荡相位模型,这可能是人们能够构建的描述群体感应的最简单模型。使用平均场近似,可以确定群体感应行为的参数范围,并获得详细动力学特性的解析结果,包括相图,并用数值方法进行了验证。第二个模型由与环境中的信号化学物质耦合的菲茨休 - 纳古莫元素组成。对于这个平均场模型的非线性动力学分析表明,随着种群参数因不同耦合强度而变化,会出现丰富的动力学行为,如无限周期分岔、超临界霍普夫分岔、折叠分岔和亚临界霍普夫分岔。得到了霍普夫分岔相边界的解析结果。此外,还研究了通过环境耦合的两个元素以及这两个模型的同步行为。对于这两个模型,都发现振荡的开始伴随着两个元素的同步动力学。还讨论了这些模型可能的应用和扩展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验