Farajzadeh Tehrani Niloofar, Razvan MohammadReza
Department of Mathematical Sciences, Sharif University of Technology, Tehran 1497945961, Iran.
Department of Mathematical Sciences, Sharif University of Technology, Tehran 1497945961, Iran.
Math Biosci. 2015 Dec;270(Pt A):41-56. doi: 10.1016/j.mbs.2015.09.008. Epub 2015 Oct 20.
This paper presents an investigation of the dynamics of two coupled non-identical FitzHugh-Nagumo neurons with delayed synaptic connection. We consider coupling strength and time delay as bifurcation parameters, and try to classify all possible dynamics which is fairly rich. The neural system exhibits a unique rest point or three ones for the different values of coupling strength by employing the pitchfork bifurcation of non-trivial rest point. The asymptotic stability and possible Hopf bifurcations of the trivial rest point are studied by analyzing the corresponding characteristic equation. Homoclinic, fold, and pitchfork bifurcations of limit cycles are found. The delay-dependent stability regions are illustrated in the parameter plane, through which the double-Hopf bifurcation points can be obtained from the intersection points of two branches of Hopf bifurcation. The dynamical behavior of the system may exhibit one, two, or three different periodic solutions due to pitchfork cycle and torus bifurcations (Neimark-Sacker bifurcation in the Poincare map of a limit cycle), of which detection was impossible without exact and systematic dynamical study. In addition, Hopf, double-Hopf, and torus bifurcations of the non trivial rest points are found. Bifurcation diagrams are obtained numerically or analytically from the mathematical model and the parameter regions of different behaviors are clarified.
本文研究了具有延迟突触连接的两个非相同耦合FitzHugh-Nagumo神经元的动力学。我们将耦合强度和时间延迟视为分岔参数,并尝试对相当丰富的所有可能动力学进行分类。通过采用非平凡平衡点的叉形分岔,神经系统对于不同的耦合强度值表现出一个独特的平衡点或三个平衡点。通过分析相应的特征方程,研究了平凡平衡点的渐近稳定性和可能的霍普夫分岔。发现了极限环的同宿、折叠和叉形分岔。在参数平面中展示了延迟相关的稳定区域,通过该区域可以从霍普夫分岔的两个分支的交点获得双霍普夫分岔点。由于叉形周期和环面分岔(极限环的庞加莱映射中的涅马克 - 萨克分岔),系统的动力学行为可能表现出一个、两个或三个不同的周期解,没有精确而系统的动力学研究就不可能检测到这些解。此外,还发现了非平凡平衡点的霍普夫、双霍普夫和环面分岔。从数学模型中通过数值或解析方法获得分岔图,并阐明了不同行为的参数区域。