Taktikos Johannes, Zaburdaev Vasily, Stark Holger
Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041924. doi: 10.1103/PhysRevE.84.041924. Epub 2011 Oct 21.
We develop a minimal model for the stochastic dynamics of microorganisms where individuals communicate via autochemotaxis. This means that microorganisms, such as bacteria, amoebae, or cells, follow the gradient of a chemical that they produce themselves to attract or repel each other. A microorganism is represented as a self-propelled particle or walker with constant speed while its velocity direction diffuses on the unit circle. We study the autochemotactic response of a single self-propelled walker whose dynamics is non-Markovian. We show that its long-time dynamics is always diffusive by deriving analytic expressions for its diffusion coefficient in the weak- and strong-coupling case. We confirm our findings by numerical simulations.
我们为微生物的随机动力学建立了一个最小模型,其中个体通过自趋化作用进行通信。这意味着微生物,如细菌、变形虫或细胞,会沿着它们自身产生的化学物质的梯度移动,以相互吸引或排斥。微生物被表示为具有恒定速度的自推进粒子或游动者,其速度方向在单位圆上扩散。我们研究了单个自推进游动者的自趋化反应,其动力学是非马尔可夫的。通过推导弱耦合和强耦合情况下其扩散系数的解析表达式,我们表明其长期动力学总是扩散性的。我们通过数值模拟证实了我们的发现。