Wolff Katrin, Vendruscolo Michele, Porto Markus
School of Physics, University of Edinburgh, JCMB Kings Buildings, Edinburgh EH9 3JZ, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041934. doi: 10.1103/PhysRevE.84.041934. Epub 2011 Oct 28.
We study a coarse-grained protein model whose primary characteristics are (i) a tubelike geometry to describe the self-avoidance effects of the polypeptide chain and (ii) an energy function based on a one-dimensional structural representation. The latter specifies the connectivity of a sequence in a given conformation, so that the energy function, rather than favoring the formation of specific native pairwise contacts, promotes the establishment of a specific target connectivity for each amino acid. We show that the resulting dynamics is in good agreement with both experimental observations and the results of all-atoms simulations. In contrast to the latter, our coarse-grained approach provides the possibility to explore longer time scales and thus enables one to access, albeit in less detail, larger regions of the conformational space. We illustrate our approach by its application to the villin headpiece domain, a three-helix protein, by studying its folding behavior and determining heat capacities and free-energy landscapes in various reaction coordinates.
我们研究了一种粗粒化蛋白质模型,其主要特征为:(i)采用管状几何结构来描述多肽链的自回避效应;(ii)基于一维结构表示的能量函数。后者指定了给定构象中序列的连通性,因此能量函数并非有利于形成特定的天然成对接触,而是促进为每个氨基酸建立特定的目标连通性。我们表明,由此产生的动力学与实验观察结果以及全原子模拟结果均高度吻合。与全原子模拟不同的是,我们的粗粒化方法提供了探索更长时间尺度的可能性,从而使人们能够(尽管细节较少)访问构象空间的更大区域。我们通过将其应用于一种三螺旋蛋白质——绒毛蛋白头部结构域,研究其折叠行为并确定各种反应坐标下的热容和自由能景观,来说明我们的方法。