Suppr超能文献

三维量子湍流中的庞加莱回归与谱级联

Poincaré recurrence and spectral cascades in three-dimensional quantum turbulence.

作者信息

Vahala George, Yepez Jeffrey, Vahala Linda, Soe Min, Zhang Bo, Ziegeler Sean

机构信息

Department of Physics, William & Mary, Williamsburg, Virginia 23185, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 2):046713. doi: 10.1103/PhysRevE.84.046713. Epub 2011 Oct 28.

Abstract

The time evolution of the ground state wave function of a zero-temperature Bose-Einstein condensate (BEC) gas is well described by the Hamiltonian Gross-Pitaevskii (GP) equation. Using a set of appropriately interleaved unitary collision-stream operators, a qubit lattice gas algorithm is devised, which on taking moments, recovers the Gross-Pitaevskii (GP) equation under diffusion ordering (time scales as length(2)). Unexpectedly, there is a class of initial states whose Poincaré recurrence time is extremely short and which, as the grid resolution is increased, scales with diffusion ordering (and not as length(3)). The spectral results of J. Yepez et al. [Phys. Rev. Lett. 103, 084501 (2009).] for quantum turbulence are revised and it is found that it is the compressible kinetic energy spectrum that exhibits three distinct spectral regions: a small-k classical-like Kolmogorov k(-5/3), a steep semiclassical cascade region, and a large-k quantum vortex spectrum k(-3). For most evolution times the incompressible kinetic energy spectrum exhibits a somewhat robust quantum vortex spectrum of k(-3) for an extended range in k with a k(-3.4) spectrum for intermediate k. For linear vortices of winding number 1 there is an intermittent loss of the quantum vortex cascade with its signature seen in the time evolution of the kinetic energy E(kin)(t), the loss of the quantum vortex k(-3) spectrum in the incompressible kinetic energy spectrum as well as the minimalization of the vortex core isosurfaces that would totally inhibit any Kelvin wave vortex cascade. In the time intervals around these intermittencies the incompressible kinetic energy also exhibits a multicascade spectrum.

摘要

零温度玻色 - 爱因斯坦凝聚(BEC)气体基态波函数的时间演化可以由哈密顿量格罗斯 - 皮塔耶夫斯基(GP)方程很好地描述。通过使用一组适当交错的酉碰撞流算子,设计了一种量子比特晶格气体算法,该算法在取矩时,在扩散排序(时间尺度为长度²)下恢复格罗斯 - 皮塔耶夫斯基(GP)方程。出乎意料的是,存在一类初始态,其庞加莱回归时间极短,并且随着网格分辨率的增加,它与扩散排序成比例(而不是与长度³成比例)。J. Yepez等人[《物理评论快报》103, 084501 (2009)]关于量子湍流的光谱结果得到修正,发现可压缩动能谱呈现出三个不同的光谱区域:小k的类经典科尔莫戈罗夫k⁻⁵/³、陡峭的半经典级联区域以及大k的量子涡旋谱k⁻³。对于大多数演化时间,不可压缩动能谱在k的扩展范围内呈现出某种稳健的k⁻³量子涡旋谱,中间k的谱为k⁻³.⁴。对于缠绕数为1的线性涡旋,量子涡旋级联会间歇性损失,其特征出现在动能Eₖᵢₙ(t)的时间演化中,不可压缩动能谱中量子涡旋k⁻³谱的损失以及涡旋核心等值面的最小化,这将完全抑制任何开尔文波涡旋级联。在这些间歇性周围的时间间隔内,不可压缩动能也呈现出多谱级联谱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验