Galuzio P P, Lopes S R, Viana R L
Departamento de Física, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 2):056211. doi: 10.1103/PhysRevE.84.056211. Epub 2011 Nov 14.
Certain high-dimensional dynamical systems present two or more attractors characterized by different energy branches. For some parameter values the dynamics oscillates between these two branches in a seemingly random fashion, a phenomenon called two-state on-off intermittency. In this work we show that the dynamical mechanism underlying this intermittency involves the severe breakdown of hyperbolicity of the attractors through a mechanism known as unstable dimension variability. We characterize the parametric evolution of this variability using statistical properties of the finite-time Lyapunov exponents. As a model system that exhibits this behavior we consider periodically forced and damped drift waves. In this spatiotemporal example there is a low-dimensional chaotic attractor that is created by an interior crisis, already presenting unstable dimension variability.
某些高维动力系统呈现出两个或更多由不同能量分支表征的吸引子。对于某些参数值,动力学以看似随机的方式在这两个分支之间振荡,这种现象称为双态开关间歇性。在这项工作中,我们表明这种间歇性背后的动力学机制涉及通过一种称为不稳定维度变异性的机制导致吸引子双曲性的严重破坏。我们使用有限时间李雅普诺夫指数的统计特性来表征这种变异性的参数演化。作为表现出这种行为的模型系统,我们考虑周期性强迫和阻尼漂移波。在这个时空示例中,存在一个由内部危机产生的低维混沌吸引子,它已经呈现出不稳定维度变异性。