Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA.
Phys Rev Lett. 2011 Nov 4;107(19):191104. doi: 10.1103/PhysRevLett.107.191104.
Gravitational-wave astronomers often wish to characterize the expected parameter-estimation accuracy of future observations. The Fisher matrix provides a lower bound on the spread of the maximum-likelihood estimator across noise realizations, as well as the leading-order width of the posterior probability, but it is limited to high signal strengths often not realized in practice. By contrast, Monte Carlo Bayesian inference provides the full posterior for any signal strength, but it is too expensive to repeat for a representative set of noises. Here I describe an efficient semianalytical technique to map the exact sampling distribution of the maximum-likelihood estimator across noise realizations, for any signal strength. This technique can be applied to any estimation problem for signals in additive Gaussian noise.
引力波天文学家通常希望描述未来观测的预期参数估计精度。Fisher 矩阵为最大似然估计器在噪声实现中的散布提供了下界,以及后验概率的主导阶宽度,但它仅限于在实践中通常无法实现的高信号强度。相比之下,蒙特卡罗贝叶斯推断为任何信号强度提供了完整的后验分布,但对于一组有代表性的噪声进行重复计算过于昂贵。在这里,我描述了一种有效的半解析技术,可以针对任何信号强度,在噪声实现中映射最大似然估计器的精确采样分布。该技术可应用于加性高斯噪声中信号的任何估计问题。