Biophysics Graduate Group, University of California, Berkeley, 94720, USA.
Phys Rev Lett. 2011 Nov 25;107(22):220601. doi: 10.1103/PhysRevLett.107.220601. Epub 2011 Nov 21.
Fitting probabilistic models to data is often difficult, due to the general intractability of the partition function. We propose a new parameter fitting method, minimum probability flow (MPF), which is applicable to any parametric model. We demonstrate parameter estimation using MPF in two cases: a continuous state space model, and an Ising spin glass. In the latter case, MPF outperforms current techniques by at least an order of magnitude in convergence time with lower error in the recovered coupling parameters.
将概率模型拟合到数据通常很困难,这是由于配分函数的普遍难以计算性。我们提出了一种新的参数拟合方法,最小概率流(MPF),它适用于任何参数模型。我们在两种情况下演示了使用 MPF 的参数估计:一个连续状态空间模型和一个伊辛自旋玻璃。在后一种情况下,MPF 在收敛时间上至少比当前技术快一个数量级,并且在恢复的耦合参数中误差更低。