Department of Chemistry, University of Virginia, McCormick Rd., Charlottesville, Virginia 22904, USA.
Anal Chem. 2012 Feb 7;84(3):1781-5. doi: 10.1021/ac202807h. Epub 2012 Jan 6.
Electron transfer dissociation (ETD) has improved the mass spectrometric analysis of proteins and peptides with labile post-translational modifications and larger intact masses. Here, the parameters governing the reaction rate of ETD are examined experimentally. Currently, due to reagent injection and isolation events as well as longer reaction times, ETD spectra require significantly more time to acquire than collision-induced dissociation (CID) spectra (>100 ms), resulting in a trade-off in the dynamic range of tandem MS analyses when ETD-based methods are compared to CID-based methods. Through fine adjustment of reaction parameters and the selection of reagents with optimal characteristics, we demonstrate a drastic reduction in the time taken per ETD event. In fact, ETD can be performed with optimal efficiency in nearly the same time as CID at low precursor charge state (z = +3) and becomes faster at higher charge state (z > +3).
电子转移解离(ETD)提高了对具有不稳定翻译后修饰和较大完整质量的蛋白质和肽的质谱分析。在这里,实验研究了控制 ETD 反应速率的参数。目前,由于试剂注入和分离事件以及较长的反应时间,ETD 谱比碰撞诱导解离(CID)谱需要更长的时间来获取(>100ms),这导致在串联质谱分析中,当与 CID 方法相比时,基于 ETD 的方法的动态范围存在权衡。通过精细调整反应参数和选择具有最佳特性的试剂,我们证明每个 ETD 事件所需的时间大大减少。实际上,在低前体电荷状态(z=+3)下,ETD 可以以接近 CID 的效率几乎在相同的时间内进行,并且在较高的电荷状态(z>+3)下变得更快。