Atochina-Vasserman Elena N
Pulmonary, Allergy and Critical Care Division, Department of Medicine University of Pennsylvania, Vernon and Shirley Hill Pavilion, #H410C, 380 S. University Ave., Philadelphia, PA 19104-4539, USA.
Biochim Biophys Acta. 2012 Jun;1820(6):763-9. doi: 10.1016/j.bbagen.2011.12.006. Epub 2011 Dec 13.
Surfactant protein D (SP-D) is a member of the family of proteins termed collagen-like lectins or "collectins" that play a role in non-antibody-mediated innate immune responses [1]. The primary function of SP-D is the modulation of host defense and inflammation [2].
This review will discuss recent findings on the physiological importance of SP-D S-nitrosylation in biological systems and potential mechanisms that govern SP-D mediated signaling.
SP-D appears to have both pro- and anti-inflammatory signaling functions. SP-D multimerization is a critical feature of its function and plays an important role in efficient innate host defense. Under baseline conditions, SP-D forms a multimer in which the N-termini are hidden in the center and the C-termini are on the surface. This multimeric form of SP-D is limited in its ability to activate inflammation. However, NO can modify key cysteine residues in the hydrophobic tail domain of SP-D resulting in a dissociation of SP-D multimers into trimers, exposing the S-nitrosylated N-termini. The exposed S-nitrosylated tail domain binds to the calreticulin/CD91 receptor complex and initiates a pro-inflammatory response through phosphorylation of p38 and NF-κB activation [3,4]. In addition, the disassembled SP-D loses its ability to block TLR4, which also results in activation of NF-κB.
Recent studies have highlighted the capability of NO to modify SP-D through S-nitrosylation, causing the activation of a pro-inflammatory role for SP-D [3]. This represents a novel mechanism both for the regulation of SP-D function and NO's role in innate immunity, but also demonstrates that the S-nitrosylation can control protein function by regulating quaternary structure. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.
表面活性蛋白D(SP-D)是一类被称为胶原样凝集素或“collectins”的蛋白质家族成员,在非抗体介导的固有免疫反应中发挥作用[1]。SP-D的主要功能是调节宿主防御和炎症反应[2]。
本综述将讨论SP-D S-亚硝基化在生物系统中的生理重要性的最新发现以及调控SP-D介导信号传导的潜在机制。
SP-D似乎具有促炎和抗炎信号传导功能。SP-D多聚化是其功能的关键特征,在有效的固有宿主防御中起重要作用。在基线条件下,SP-D形成一种多聚体,其中N端隐藏在中心,C端位于表面。这种SP-D的多聚体形式激活炎症的能力有限。然而,一氧化氮(NO)可以修饰SP-D疏水尾域中的关键半胱氨酸残基,导致SP-D多聚体解离为三聚体,暴露出S-亚硝基化的N端。暴露的S-亚硝基化尾域与钙网蛋白/CD91受体复合物结合,并通过p38磷酸化和NF-κB激活引发促炎反应[3,4]。此外,解聚的SP-D失去了阻断Toll样受体4(TLR4)的能力,这也导致NF-κB的激活。
最近的研究强调了NO通过S-亚硝基化修饰SP-D的能力,从而导致SP-D发挥促炎作用[3]。这不仅代表了一种调节SP-D功能和NO在固有免疫中作用的新机制,也证明了S-亚硝基化可以通过调节四级结构来控制蛋白质功能。本文是名为“S-亚硝基化对细胞过程的调节”的特刊的一部分。