Cardiovascular Research Centre, Division of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
J Physiol. 2012 Mar 1;590(5):1171-80. doi: 10.1113/jphysiol.2011.218164. Epub 2011 Dec 19.
Early after-depolarization (EAD), or abnormal depolarization during the plateau phase of action potentials, is a hallmark of long-QT syndrome (LQTS). More than 13 genes have been identified as responsible for LQTS, and elevated risks for EADs may depend on genotypes, such as exercise in LQT1 vs. sudden arousal in LQT2 patients. We investigated mechanisms underlying different high-risk conditions that trigger EADs using transgenic rabbit models of LQT1 and LQT2, which lack I(Ks) and I(Kr) (slow and fast components of delayed rectifying K(+) current), respectively. Single-cell patch-clamp studies show that prolongation of action potential duration (APD) can be further enhanced by lowering extracellular potassium concentration (K(+)) from 5.4 to 3.6 mm. However, only LQT2 myocytes developed spontaneous EADs following perfusion with lower K(+), while there was no EAD formation in littermate control (LMC) or LQT1 myocytes, although APDs were also prolonged in LMC myocytes and LQT1 myocytes. Isoprenaline (ISO) prolonged APDs and triggered EADs in LQT1 myocytes in the presence of lower K(+). In contrast, continuous ISO perfusion diminished APD prolongation and reduced the incidence of EADs in LQT2 myocytes. These different effects of ISO on LQT1 and LQT2 were verified by optical mapping of the whole heart, suggesting that ISO-induced EADs are genotype specific. Further voltage-clamp studies revealed that ISO increases L-type calcium current (I(Ca)) faster than I(Ks) (time constant 9.2 s for I(Ca) and 43.6 s for I(Ks)), and computer simulation demonstrated a high-risk window of EADs in LQT2 during ISO perfusion owing to mismatch in the time courses of I(Ca) and I(Ks), which may explain why a sympathetic surge rather than high sympathetic tone can be an effective trigger of EADs in LQT2 perfused hearts. In summary, EAD formation is genotype specific, such that EADs can be elicited in LQT2 myocytes simply by lowering K(+), while LQT1 myocytes require sympathetic stimulation. Slower activation of I(Ks) than of I(Ca) by ISO may explain why different sympathetic modes, i.e. sympathetic surge vs. high sympathetic tone, are associated with polymorphic ventricular tachycardia in LQTS patients.
早期后除极(EAD),或动作电位平台期的异常除极,是长 QT 综合征(LQTS)的标志。已有 13 多个基因被确定为 LQTS 的致病基因,EAD 的风险升高可能取决于基因型,例如 LQT1 患者运动时和 LQT2 患者突然觉醒时。我们使用缺乏 I(Ks)和 I(Kr)(延迟整流钾电流的慢和快成分)的 LQT1 和 LQT2 转基因兔模型,研究了触发 EAD 的不同高危条件的机制。单细胞膜片钳研究表明,将细胞外钾浓度K(+)从 5.4 降至 3.6 mM 可进一步延长动作电位时程(APD)。然而,只有 LQT2 心肌细胞在用较低的K(+)灌流后才会自发产生 EAD,而在同窝对照(LMC)或 LQT1 心肌细胞中则没有 EAD 形成,尽管 LMC 心肌细胞和 LQT1 心肌细胞的 APD 也延长了。异丙肾上腺素(ISO)在较低的K(+)存在下延长 LQT1 心肌细胞的 APD 并触发 EAD。相比之下,持续 ISO 灌注会减少 LQT2 心肌细胞 APD 的延长并降低 EAD 的发生率。光学标测整个心脏证实了 ISO 对 LQT1 和 LQT2 的这种不同影响,表明 ISO 诱导的 EAD 是由基因型决定的。进一步的电压钳研究表明,ISO 增加 L 型钙电流(I(Ca))的速度快于 I(Ks)(I(Ca)的时间常数为 9.2 s,I(Ks)的时间常数为 43.6 s),计算机模拟显示,由于 I(Ca)和 I(Ks)的时程不匹配,在 ISO 灌注期间 LQT2 存在 EAD 的高危窗口,这可能解释了为什么交感神经激增而不是高交感神经张力可以成为 LQT2 灌注心脏 EAD 的有效触发因素。总之,EAD 的形成是由基因型决定的,因此,简单地降低K(+)就可以在 LQT2 心肌细胞中引发 EAD,而 LQT1 心肌细胞则需要交感神经刺激。ISO 对 I(Ks)的激活比 I(Ca)慢可能解释了为什么不同的交感模式,即交感神经激增与高交感神经张力,与 LQTS 患者的多形性室性心动过速有关。