I Institut für Theoretische Physik, Universität Hamburg, Hamburg, Germany.
J Phys Condens Matter. 2012 Jan 25;24(3):035603. doi: 10.1088/0953-8984/24/3/035603.
The zero-temperature single-particle Green's function of correlated fermion models with moderately large Hilbert-space dimensions can be calculated by means of Krylov-space techniques. The conventional Lanczos approach consists of finding the ground state in a first step, followed by an approximation for the resolvent of the Hamiltonian in a second step. We analyze the character of this approximation and discuss a numerically exact variant of the Lanczos method which is formulated in the time domain. This method is extended to obtain the nonequilibrium single-particle Green's function defined on the Keldysh-Matsubara contour in the complex time plane which describes the system's nonperturbative response to a sudden parameter switch in the Hamiltonian. The proposed method will be important as an exact-diagonalization solver in the context of self-consistent or variational cluster-embedding schemes. For the recently developed nonequilibrium cluster-perturbation theory, we discuss its efficient implementation and demonstrate the feasibility of the Krylov-based solver. The dissipation of a strong local magnetic excitation into a non-interacting bath is considered as an example for applications.
具有中等大小 Hilbert 空间维度的关联费米子模型的零温单粒子格林函数可以通过 Krylov 空间技术来计算。传统的 Lanczos 方法包括在第一步中找到基态,然后在第二步中对哈密顿量的解析函数进行近似。我们分析了这种近似的性质,并讨论了一种数值上精确的 Lanczos 方法变体,该方法在时域中得到了公式化。该方法被扩展到了在复时间平面上的 Keldysh-Matsubara 围道上定义的非平衡单粒子格林函数,它描述了系统对哈密顿量中突然参数变化的非微扰响应。所提出的方法将作为自洽或变分团嵌入方案中精确对角化求解器的重要工具。对于最近发展的非平衡团簇微扰理论,我们讨论了其有效的实现,并展示了基于 Krylov 求解器的可行性。强局域磁激发耗散到非相互作用的浴中就是应用的一个例子。