Iwase Shigeru, Hoshi Takeo, Ono Tomoya
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
Department of Applied Mathematics and Physics, Tottori University, Tottori, Tottori 680-8550, Japan and JST-CREST, Kawaguchi, Saitama 332-0012, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):063305. doi: 10.1103/PhysRevE.91.063305. Epub 2015 Jun 12.
We propose an efficient procedure to obtain Green's functions by combining the shifted conjugate orthogonal conjugate gradient (shifted COCG) method with the nonequilibrium Green's function (NEGF) method based on a real-space finite-difference (RSFD) approach. The bottleneck of the computation in the NEGF scheme is matrix inversion of the Hamiltonian including the self-energy terms of electrodes to obtain the perturbed Green's function in the transition region. This procedure first computes unperturbed Green's functions and calculates perturbed Green's functions from the unperturbed ones using a mathematically strict relation. Since the matrices to be inverted to obtain the unperturbed Green's functions are sparse, complex-symmetric, and shifted for a given set of sampling energy points, we can use the shifted COCG method, in which once the Green's function for a reference energy point has been calculated the Green's functions for the other energy points can be obtained with a moderate computational cost. We calculate the transport properties of a C(60)@(10,10) carbon nanotube (CNT) peapod suspended by (10,10)CNTs as an example of a large-scale transport calculation. The proposed scheme opens the possibility of performing large-scale RSFD-NEGF transport calculations using massively parallel computers without the loss of accuracy originating from the incompleteness of the localized basis set.
我们提出了一种高效的方法,通过将移位共轭正交共轭梯度(shifted COCG)方法与基于实空间有限差分(RSFD)方法的非平衡格林函数(NEGF)方法相结合来获得格林函数。NEGF方案中计算的瓶颈在于哈密顿量的矩阵求逆,其中包括电极的自能项,以获得过渡区域中的微扰格林函数。该方法首先计算未微扰的格林函数,并使用严格的数学关系从未微扰的格林函数计算微扰的格林函数。由于为获得未微扰的格林函数而要求逆的矩阵是稀疏的、复对称的,并且针对给定的一组采样能量点进行了移位,因此我们可以使用移位COCG方法,在该方法中,一旦计算出参考能量点的格林函数,就可以以适度的计算成本获得其他能量点的格林函数。我们以由(10,10)碳纳米管(CNT)悬浮的C(60)@(10,10)碳纳米管豌豆荚为例,计算了其输运性质,作为大规模输运计算的一个例子。所提出的方案为使用大规模并行计算机进行大规模RSFD-NEGF输运计算开辟了可能性,而不会因局部基组的不完整性而导致精度损失。