Evans Emily E, Fiser Briana L, Prins Willem J, Rapp Daniel J, Shields Adam R, Glass Daniel R, Superfine R
Department of Physics, Elon University, Elon, NC 27244 (USA).
Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA).
J Magn Magn Mater. 2012 Feb;324(4):501-507. doi: 10.1016/j.jmmm.2011.08.045.
Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material which is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite (γ-Fe0) nanoparticles 7-10 nm in diameter. The material is homogenous at very small length scales (< 100 nm) and can be crosslinked to form a flexible, magnetic material which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 - 50% wt. without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings.
磁性弹性体已被广泛应用于传感和驱动领域。与水凝胶等其他材料相比,硅基磁性弹性体具有许多优势,但硅氧烷中磁性纳米颗粒的聚集难以避免。聚集本质上限制了制造结构的最小尺寸,并导致不同结构之间的响应不均匀。我们开发了一种新型材料,它是一种吸附在直径为7-10纳米的磁铁矿(γ-Fe0)纳米颗粒表面的硅氧烷聚合物(聚二甲基硅氧烷-共-氨丙基甲基硅氧烷)复合物。该材料在非常小的长度尺度(<100纳米)上是均匀的,并且可以交联形成一种柔性磁性材料,非常适合用于制造微米到纳米级的磁致动器。复合材料中磁性纳米颗粒的负载分数可以在0-50%重量范围内平滑变化,而不会失去均匀性,这为调节致动器响应提供了一种简单的机制。我们评估了一系列纳米颗粒负载下复合材料的材料性能,并证明磁场诱导的压缩模量增加高达300%。此外,我们实施了一种策略来预测磁驱动应用的最佳纳米颗粒负载,并表明我们的预测与实验结果相关性良好。