Suppr超能文献

高迁移率纳米尺度磁性人工纤毛。

Highly motile nanoscale magnetic artificial cilia.

机构信息

Microsystems Section, Mechanical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands.

Galatea Laboratory, Institute of Electrical and Microengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-2002 Neuchâtel, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2021 Aug 31;118(35). doi: 10.1073/pnas.2104930118.

Abstract

Among the many complex bioactuators functioning at different scales, the organelle cilium represents a fundamental actuating unit in cellular biology. Producing motions at submicrometer scales, dominated by viscous forces, cilia drive a number of crucial bioprocesses in all vertebrate and many invertebrate organisms before and after their birth. Artificially mimicking motile cilia has been a long-standing challenge while inspiring the development of new materials and methods. The use of magnetic materials has been an effective approach for realizing microscopic artificial cilia; however, the physical and magnetic properties of the magnetic material constituents and fabrication processes utilized have almost exclusively only enabled the realization of highly motile artificial cilia with dimensions orders of magnitude larger than their biological counterparts. This has hindered the development and study of model systems and devices with inherent size-dependent aspects, as well as their application at submicrometer scales. In this work, we report a magnetic elastomer preparation process coupled with a tailored molding process for the successful fabrication of artificial cilia with submicrometer dimensions showing unprecedented deflection capabilities, enabling the design of artificial cilia with high motility and at sizes equal to those of their smallest biological counterparts. The reported work crosses the barrier of nanoscale motile cilia fabrication, paving the way for maximum control and manipulation of structures and processes at micro- and nanoscales.

摘要

在众多在不同尺度上发挥作用的复杂生物执行器中,细胞器纤毛代表了细胞生物学中的基本执行单元。纤毛在亚微米尺度上产生运动,主要由粘性力驱动,在脊椎动物和许多无脊椎动物的出生前后,它驱动着许多关键的生物过程。人工模拟运动纤毛一直是一个长期存在的挑战,同时也激发了新材料和方法的发展。磁性材料的使用是实现微观人工纤毛的有效方法;然而,所使用的磁性材料成分的物理和磁学性质以及制造工艺几乎仅能够实现尺寸比其生物对应物大几个数量级的高度运动的人工纤毛。这阻碍了具有固有尺寸相关方面的模型系统和器件的开发和研究,以及它们在亚微米尺度上的应用。在这项工作中,我们报告了一种磁弹性体的制备工艺,结合了定制的模塑工艺,成功地制造了具有亚微米尺寸的人工纤毛,具有前所未有的挠度能力,能够设计出具有高运动性和与最小生物对应物尺寸相等的人工纤毛。所报道的工作跨越了纳米级运动纤毛制造的障碍,为微纳尺度的结构和过程的最大控制和操纵铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dad/8536319/c3c0eccf471d/pnas.2104930118fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验