Suppr超能文献

中枢神经系统治疗性纳米颗粒的经颊给药:合成、表征及体外渗透研究

Transbuccal Delivery of CNS Therapeutic Nanoparticles: Synthesis, Characterization, and In Vitro Permeation Studies.

作者信息

Yuan Quan, Fu Yao, Kao Weiyuan John, Janigro Damir, Yang Hu

机构信息

Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.

出版信息

ACS Chem Neurosci. 2011 Nov 16;2(11):676-683. doi: 10.1021/cn200078m.

Abstract

This work utilized polyamidoamine (PAMAM) dendrimer G4.5 as the underlying carrier to construct CNS therapeutic nanoparticles and explored the buccal mucosa as an alternative absorption site for administration of the dendritic nanoparticles. Opioid peptide DPDPE was chosen as a model CNS drug. It was coupled to PAMAM dendrimer G4.5 with polyethylene glycol (PEG) or with PEG and transferrin receptor monoclonal antibody OX26 (i.e., PEG-G4.5-DPDPE and OX26-PEG-G4.5-DPDPE). The therapeutic dendritic nanoparticles labeled with 5-(aminoacetamido) fluorescein (AAF) were studied for transbuccal transport using a vertical Franz diffusion cell system mounted with porcine buccal mucosa. For comparison, AAF-labeled PAMAM dendrimers G3.5 and G4.5, and fluorescein isothiocynate (FITC)-labeled G3.0 and G4.0 were also tested for transbuccal delivery. The permeability of PEG-G4.5 (AAF)-DPDPE and OX26-PEG-G4.5(AAF)-DPDPE were on the order of 10(-7) - 10(-6) cm/s. Coadministration of bile salt sodium glycodeoxycholate (NaGDC) enhanced the permeability of dendritic nanoparticles by multiple folds. Similarly, a multifold increase of permeability of dendritic nanoparticles across the porcine buccal mucosal resulted from the application of mucoadhesive gelatin/PEG semi-interpenetrating network (sIPN). These results indicate that transbuccal delivery is a possible route for administration of CNS therapeutic nanoparticles.

摘要

本研究利用聚酰胺-胺(PAMAM)树枝状大分子G4.5作为基础载体构建中枢神经系统治疗性纳米颗粒,并探索颊黏膜作为树枝状纳米颗粒给药的替代吸收部位。选择阿片样肽DPDPE作为中枢神经系统模型药物。它通过聚乙二醇(PEG)或与PEG和转铁蛋白受体单克隆抗体OX26偶联至PAMAM树枝状大分子G4.5(即PEG-G4.5-DPDPE和OX26-PEG-G4.5-DPDPE)。使用装有猪颊黏膜的垂直Franz扩散池系统研究了用5-(氨基乙酰氨基)荧光素(AAF)标记的治疗性树枝状纳米颗粒的经颊转运。作为比较,还测试了AAF标记的PAMAM树枝状大分子G3.5和G4.5以及异硫氰酸荧光素(FITC)标记的G3.0和G4.0的经颊递送。PEG-G4.5(AAF)-DPDPE和OX26-PEG-G4.5(AAF)-DPDPE的渗透率约为10^(-7)-10^(-6) cm/s。胆盐甘氨脱氧胆酸钠(NaGDC)的共同给药使树枝状纳米颗粒的渗透率提高了数倍。同样,通过应用粘膜粘附性明胶/PEG半互穿网络(sIPN),树枝状纳米颗粒在猪颊黏膜上的渗透率也有了数倍的增加。这些结果表明经颊给药是中枢神经系统治疗性纳米颗粒给药的一种可能途径。

相似文献

2
Semi-interpenetrating network (sIPN) co-electrospun gelatin/insulin fiber formulation for transbuccal insulin delivery.
Pharm Res. 2015 Jan;32(1):275-85. doi: 10.1007/s11095-014-1461-9. Epub 2014 Jul 17.
3
Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery.
J Control Release. 2015 Feb 28;200:115-24. doi: 10.1016/j.jconrel.2014.12.037. Epub 2014 Dec 29.
4
Effect of polyamidoamine dendrimer G3 and G4 on skin permeation of 8-methoxypsoralene--in vivo study.
Int J Pharm. 2012 Apr 15;426(1-2):280-283. doi: 10.1016/j.ijpharm.2012.01.041. Epub 2012 Jan 30.
6
Synthesis and characterization of thermoresponsive polyamidoamine-polyethylene glycol-poly(D,L-lactide) core-shell nanoparticles.
Acta Biomater. 2010 Mar;6(3):1131-9. doi: 10.1016/j.actbio.2009.08.036. Epub 2009 Aug 27.
7
In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer.
J Nanobiotechnology. 2016 Jun 13;14(1):45. doi: 10.1186/s12951-016-0197-6.
9
PEGylated PAMAM dendrimers loading oxaliplatin with prolonged release and high payload without burst effect.
Biopolymers. 2019 Jul;110(7):e23272. doi: 10.1002/bip.23272. Epub 2019 Mar 21.
10
Breast Tumor Targeting with PAMAM-PEG-5FU-Tc As a New Therapeutic Nanocomplex: In In-vitro and In-vivo studies.
Biomed Microdevices. 2020 Apr 25;22(2):31. doi: 10.1007/s10544-020-00485-5.

引用本文的文献

2
Ionic Liquid Pilocarpine Analog as an Antiglaucoma Drug Candidate.
ACS Pharmacol Transl Sci. 2022 Jul 8;5(9):752-760. doi: 10.1021/acsptsci.2c00024. eCollection 2022 Sep 9.
3
Nano-in-Nano Dendrimer Gel Particles for Efficient Topical Delivery of Antiglaucoma Drugs into the Eye.
Chem Eng J. 2021 Dec 1;425. doi: 10.1016/j.cej.2021.130498. Epub 2021 May 28.
5
Drug-loaded chitosan film prepared via facile solution casting and air-drying of plain water-based chitosan solution for ocular drug delivery.
Bioact Mater. 2020 May 4;5(3):577-583. doi: 10.1016/j.bioactmat.2020.04.013. eCollection 2020 Sep.
6
PEAMOtecan, a novel chronotherapeutic polymeric drug for brain cancer.
J Control Release. 2020 May 10;321:36-48. doi: 10.1016/j.jconrel.2020.02.003. Epub 2020 Feb 3.
7
Advances in Nanoparticulate Drug Delivery Approaches for Sublingual and Buccal Administration.
Front Pharmacol. 2019 Nov 5;10:1328. doi: 10.3389/fphar.2019.01328. eCollection 2019.
8
Targeted inactivation of EPS8 using dendrimer-mediated delivery of RNA interference.
Int J Pharm. 2019 Feb 25;557:178-181. doi: 10.1016/j.ijpharm.2018.12.060. Epub 2018 Dec 28.
9
Radiation-Sensitive Dendrimer-Based Drug Delivery System.
Adv Sci (Weinh). 2017 Dec 5;5(2):1700339. doi: 10.1002/advs.201700339. eCollection 2018 Feb.
10

本文引用的文献

1
Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis.
Pharm Res. 2010 Sep;27(9):1759-71. doi: 10.1007/s11095-010-0141-7. Epub 2010 Jul 1.
4
Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: Influence of size, charge and fluorescent labeling.
Pharm Res. 2006 Dec;23(12):2818-26. doi: 10.1007/s11095-006-9122-2. Epub 2006 Nov 9.
5
In vitro enzymatic stability of dendritic peptides.
J Biomed Mater Res A. 2006 Feb;76(2):398-407. doi: 10.1002/jbm.a.30529.
6
The use of mucoadhesive polymers in buccal drug delivery.
Adv Drug Deliv Rev. 2005 Nov 3;57(11):1666-91. doi: 10.1016/j.addr.2005.07.003. Epub 2005 Sep 23.
7
Transport of dendrimer nanocarriers through epithelial cells via the transcellular route.
J Control Release. 2004 Jun 18;97(2):259-67. doi: 10.1016/j.jconrel.2004.03.022.
10
Challenges for the oral delivery of macromolecules.
Nat Rev Drug Discov. 2003 Apr;2(4):289-95. doi: 10.1038/nrd1067.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验