Suppr超能文献

传统肾细胞癌的综合分期系统:两种预后模型的比较

Integrated staging systems for conventional renal cell carcinoma: a comparison of two prognostic models.

作者信息

Martella Oreste, Galatioto Giuseppe Paradiso, Necozione Stefano, Pomante Roberto, Vicentini Carlo

机构信息

Division of Urology, Giuseppe Mazzini Hospital, Teramo, Italy.

出版信息

Arch Ital Urol Androl. 2011 Sep;83(3):121-7.

Abstract

OBJECTIVE

The objective of the current study was to compare, in a single center experience, the discriminating accuracy of two prognostic models to predict the outcome of patients surgically treated for conventional renal cell carcinoma (RCC).

PATIENTS AND METHODS

We retrospectively evaluated the clinical and pathological data of 100 patients surgically treated for RCC between 1998-2008 at our institution. For each patient, prognostic scores were calculated according to two models: the University of California Los Angeles integrated staging system (UISS) and the Stage, Size, Grade, and Necrosis (SSIGN) developed at the Mayo Clinic. The prognostic predictive ability of models was evaluated using receiver operating characteristic (ROC) curves.

RESULTS

The median follow-up was 62 months (range 12-120). All clinical and pathological features that compound the algorithms were significantly associated with death from RCC in univariate and multivariate setting. The 5-year cancer-specific survival (CSS) according to the SSIGN score were 95% in the '0-2' category, 88% in '3-4', 60% in '5-6', 37% in '7-9' and 0% in the '> or = 10' group (long-rank p value < 0.001); according to the UISS the 5 yr CSS probabilities in non-metastatic patients were 100% in low, 80% in intermediate and 54% in high-risk groups; in metastatic patients, the respectively CSS were 40% in low and 25% in high-risk groups (long-rank p value < 0.001). The area under the ROC curve was 0.815 for the SSIGN score and 0.843 for the UISS (p = 0.632).

CONCLUSION

In our series the SSIGN and UISS discriminated well, without relevant differences. Currently both algorithms represent usefuls clinical tools that allow risk assessment after surgical treatment of RCC. We encourage the uro-oncologist to begin to routinely rely on them in real-life practice.

摘要

目的

本研究的目的是在单一中心的经验中,比较两种预后模型预测接受传统肾细胞癌(RCC)手术治疗患者结局的判别准确性。

患者与方法

我们回顾性评估了1998年至2008年在本机构接受RCC手术治疗的100例患者的临床和病理数据。对于每位患者,根据两种模型计算预后评分:加利福尼亚大学洛杉矶分校综合分期系统(UISS)和梅奥诊所开发的分期、大小、分级和坏死(SSIGN)。使用受试者操作特征(ROC)曲线评估模型的预后预测能力。

结果

中位随访时间为62个月(范围12 - 120个月)。构成算法的所有临床和病理特征在单变量和多变量分析中均与RCC死亡显著相关。根据SSIGN评分,“0 - 2”组的5年癌症特异性生存率(CSS)为95%,“3 - 4”组为88%,“5 - 6”组为60%,“7 - 9”组为37%,“≥10”组为0%(对数秩p值<0.001);根据UISS,非转移性患者中低风险组的5年CSS概率为100%,中风险组为80%,高风险组为54%;在转移性患者中,低风险组和高风险组的CSS分别为40%和25%(对数秩p值<0.001)。SSIGN评分的ROC曲线下面积为0.815,UISS为0.843(p = 0.632)。

结论

在我们的系列研究中,SSIGN和UISS判别效果良好,无显著差异。目前这两种算法都是有用的临床工具,可用于RCC手术治疗后的风险评估。我们鼓励泌尿肿瘤学家在实际临床实践中开始常规使用它们。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验