Klapper H, Hahn Th
Institut für Kristallographie, RWTH Aachen University, D-52056 Aachen, Germany.
Acta Crystallogr A. 2012 Jan;68(Pt 1):82-109. doi: 10.1107/S0108767311032454. Epub 2011 Nov 24.
This paper is an extension of a previous treatment of twins by merohedry' with full lattice coincidence [Σ = 1, Klapper & Hahn (2010). Acta Cryst. A66, 327-346] to twins by reticular merohedry' with partial lattice coincidence (Σ > 1). Again, the sets of symmetrically equivalent reflections {hkl} are considered as sets of equivalent faces (face forms) {hkl}, and the behaviour of the oriented eigensymmetries of these forms under the action of a twin operation is used to determine the X-ray reflection sets, the intensities of which are affected or not affected by the twinning. The following cases are treated: rhombohedral obverse/reverse Σ3 twins, cubic Σ3 (spinel) twins, tetragonal Σ5 twins (twin elements m'(120), 2'[ ̅210]) and hexagonal Σ7 twins (m'(12 ̅30), 2'[2 ̅10]). For each case the twin laws for all relevant point groups are defined, and the twin diffraction cases A (intensity of twin-related reflection sets not affected), B1 (intensity affected), B2 (intensity affected only by anomalous scattering) and S (single, i.e. non-coincident reflection sets) are derived for all twin laws. A special treatment is provided for the cubic Σ3 twins, where the cubic face forms first have to be split into up to four rhombohedral subforms with a threefold axis along one of the four cube <111> directions, here [111]. These subforms exhibit different twin diffraction cases analogous to those derived for the rhombohedral obverse/reverse Σ3 twins. A complete list of the split forms and their diffraction cases for all cubic point groups and all Σ3 twin elements is given. The application to crystal structure determination of crystals twinned by reticular merohedry and to X-ray topographic mapping of twin domains is discussed.
本文是对先前关于“通过全晶格重合的‘准同形孪晶’”([Σ = 1,克拉珀与哈恩(2010年)。《晶体学报》A66卷,327 - 346页])的处理的扩展,扩展到具有部分晶格重合(Σ > 1)的“通过网状准同形的孪晶”。同样,将对称等效反射集{hkl}视为等效面(面形)集{hkl},并利用这些面形的定向本征对称在孪晶操作作用下的行为来确定X射线反射集,其强度会受到孪晶的影响或不受影响。处理了以下情况:菱面体正/反Σ3孪晶、立方Σ3(尖晶石)孪晶、四方Σ5孪晶(孪晶元素m'(120),2'[ ̅210])和六方Σ7孪晶(m'(12 ̅30),2'[2 ̅10])。对于每种情况,定义了所有相关点群的孪晶定律,并针对所有孪晶定律推导了孪晶衍射情况A(孪晶相关反射集的强度不受影响)、B1(强度受影响)、B2(强度仅受反常散射影响)和S(单反射,即非重合反射集)。对立方Σ3孪晶进行了特殊处理,其中立方面形首先必须分解为多达四个沿四个立方<111>方向之一(此处为[111])具有三重轴的菱面体子面形。这些子面形表现出与为菱面体正/反Σ3孪晶推导的类似的不同孪晶衍射情况。给出了所有立方点群和所有Σ3孪晶元素的分裂形式及其衍射情况的完整列表。讨论了其在通过网状准同形孪晶的晶体结构测定以及孪晶畴的X射线形貌映射中的应用。