Suppr超能文献

基于全图优化的三维水脂分离和 T2*估计——在 1.5T 屏气肝脏成像中的应用。

Three-dimensional water/fat separation and T2* estimation based on whole-image optimization--application in breathhold liver imaging at 1.5 T.

机构信息

Department of Radiology, Uppsala University, Uppsala, Sweden.

出版信息

Magn Reson Med. 2012 Jun;67(6):1684-93. doi: 10.1002/mrm.23185. Epub 2011 Dec 21.

Abstract

The chemical shift of water and fat resonances in proton MRI allows separation of water and fat signal from chemical shift encoded data. This work describes an automatic method that produces separate water and fat images as well as quantitative maps of fat signal fraction and T2* from complex multiecho gradient-recalled datasets. Accurate water and fat separation is challenging due to signal ambiguity at the voxel level. Whole-image optimization can resolve this ambiguity, but might be computationally demanding, especially for three-dimensional data. In this work, periodicity of the model fit residual as a function of the off-resonance was used to modify a previously proposed formulation of the problem. This gives a smaller solution space and allows rapid optimization. Feasibility and accurate separation of water and fat signal were demonstrated in breathhold three-dimensional liver imaging of 10 volunteer subjects, with both acquisition and reconstruction times below 20 s.

摘要

质子 MRI 中水质子和脂肪共振的化学位移允许从化学位移编码数据中分离出水和脂肪信号。本工作描述了一种自动方法,可从复杂的多回波梯度回波数据集产生水和脂肪的分离图像以及脂肪信号分数和 T2* 的定量图。由于体素水平的信号歧义,准确的水脂分离具有挑战性。全图像优化可以解决这种歧义,但可能计算量很大,特别是对于三维数据。在这项工作中,模型拟合残差作为离频函数的周期性被用来修改以前提出的问题的公式。这给出了更小的解空间,并允许快速优化。在 10 名志愿者的屏气三维肝脏成像中验证了水脂信号的可行性和准确分离,采集和重建时间均低于 20 秒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验