Suppr超能文献

整合机器学习与医生知识以提高乳腺活检的准确性。

Integrating machine learning and physician knowledge to improve the accuracy of breast biopsy.

作者信息

Dutra I, Nassif H, Page D, Shavlik J, Strigel R M, Wu Y, Elezaby M E, Burnside E

机构信息

University of Porto, Porto, Portugal.

出版信息

AMIA Annu Symp Proc. 2011;2011:349-55. Epub 2011 Oct 22.

Abstract

In this work we show that combining physician rules and machine learned rules may improve the performance of a classifier that predicts whether a breast cancer is missed on percutaneous, image-guided breast core needle biopsy (subsequently referred to as "breast core biopsy"). Specifically, we show how advice in the form of logical rules, derived by a sub-specialty, i.e. fellowship trained breast radiologists (subsequently referred to as "our physicians") can guide the search in an inductive logic programming system, and improve the performance of a learned classifier. Our dataset of 890 consecutive benign breast core biopsy results along with corresponding mammographic findings contains 94 cases that were deemed non-definitive by a multidisciplinary panel of physicians, from which 15 were upgraded to malignant disease at surgery. Our goal is to predict upgrade prospectively and avoid surgery in women who do not have breast cancer. Our results, some of which trended toward significance, show evidence that inductive logic programming may produce better results for this task than traditional propositional algorithms with default parameters. Moreover, we show that adding knowledge from our physicians into the learning process may improve the performance of the learned classifier trained only on data.

摘要

在这项工作中,我们表明,将医生规则和机器学习规则相结合,可以提高预测经皮图像引导下乳腺粗针穿刺活检(以下简称“乳腺粗针活检”)是否漏诊乳腺癌的分类器的性能。具体而言,我们展示了由亚专业(即接受过专科培训的乳腺放射科医生,以下简称“我们的医生”)推导的逻辑规则形式的建议如何在归纳逻辑编程系统中指导搜索,并提高学习到的分类器的性能。我们的数据集包含890例连续的乳腺粗针活检良性结果以及相应的乳腺钼靶检查结果,其中94例被多学科医生小组判定为不确定,其中15例在手术时被升级为恶性疾病。我们的目标是前瞻性地预测升级情况,并避免对没有乳腺癌的女性进行手术。我们的结果,其中一些趋于显著,表明有证据表明归纳逻辑编程在此任务上可能比具有默认参数的传统命题算法产生更好的结果。此外,我们表明,将我们医生的知识添加到学习过程中,可以提高仅基于数据训练的学习到的分类器的性能。

相似文献

3
Impact of core-needle breast biopsy on the surgical management of mammographic abnormalities.
Ann Surg. 2001 Jun;233(6):769-77. doi: 10.1097/00000658-200106000-00006.
4
Validation of results from knowledge discovery: mass density as a predictor of breast cancer.
J Digit Imaging. 2010 Oct;23(5):554-61. doi: 10.1007/s10278-009-9235-3. Epub 2009 Sep 16.
6
Fluorescence spectroscopy: an adjunct diagnostic tool to image-guided core needle biopsy of the breast.
IEEE Trans Biomed Eng. 2009 Oct;56(10):2518-28. doi: 10.1109/TBME.2009.2015936. Epub 2009 Mar 4.
9
Benign breast papillomas without atypia diagnosed with core needle biopsy: Outcome of surgical excision and imaging follow-up.
Eur J Radiol. 2020 Oct;131:109237. doi: 10.1016/j.ejrad.2020.109237. Epub 2020 Aug 28.

引用本文的文献

1
Improving diagnostic recognition of primary hyperparathyroidism with machine learning.
Surgery. 2017 Apr;161(4):1113-1121. doi: 10.1016/j.surg.2016.09.044. Epub 2016 Dec 15.
2
Using Machine Learning to Identify Benign Cases with Non-Definitive Biopsy.
Healthcom. 2013 Oct 9;2013(15th):283-285. doi: 10.1109/HealthCom.2013.6720685.
3
Leveraging Expert Knowledge to Improve Machine-Learned Decision Support Systems.
AMIA Jt Summits Transl Sci Proc. 2015 Mar 25;2015:87-91. eCollection 2015.

本文引用的文献

1
Utility of 6-month follow-up imaging after a concordant benign breast biopsy result.
Radiology. 2011 Feb;258(2):380-7. doi: 10.1148/radiol.10091824. Epub 2010 Nov 15.
4
An evolutionary artificial neural networks approach for breast cancer diagnosis.
Artif Intell Med. 2002 Jul;25(3):265-81. doi: 10.1016/s0933-3657(02)00028-3.
5
Centennial dissertation. Percutaneous imaging-guided core breast biopsy: state of the art at the millennium.
AJR Am J Roentgenol. 2000 May;174(5):1191-9. doi: 10.2214/ajr.174.5.1741191.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验