Suppr超能文献

使用归纳逻辑编程从结构化乳腺钼靶报告中进行知识发现。

Knowledge discovery from structured mammography reports using inductive logic programming.

作者信息

Burnside Elizabeth S, Davis Jesse, Costa Victor Santos, Dutra Inês de Castro, Kahn Charles E, Fine Jason, Page David

机构信息

University of Wisconsin.

出版信息

AMIA Annu Symp Proc. 2005;2005:96-100.

Abstract

The development of large mammography databases provides an opportunity for knowledge discovery and data mining techniques to recognize patterns not previously appreciated. Using a database from a breast imaging practice containing patient risk factors, imaging findings, and biopsy results, we tested whether inductive logic programming (ILP) could discover interesting hypotheses that could subsequently be tested and validated. The ILP algorithm discovered two hypotheses from the data that were 1) judged as interesting by a subspecialty trained mammographer and 2) validated by analysis of the data itself.

摘要

大型乳房X光摄影数据库的发展为知识发现和数据挖掘技术提供了机会,以识别以前未被认识到的模式。利用一个来自乳房成像机构的数据库,其中包含患者风险因素、成像结果和活检结果,我们测试了归纳逻辑编程(ILP)是否能发现有趣的假设,这些假设随后可以进行测试和验证。ILP算法从数据中发现了两个假设,1)由经过专科培训的乳房X光摄影师判断为有趣,2)通过对数据本身的分析得到验证。

相似文献

2
Case-based reasoning computer algorithm that uses mammographic findings for breast biopsy decisions.
AJR Am J Roentgenol. 2000 Nov;175(5):1347-52. doi: 10.2214/ajr.175.5.1751347.
3
MammoSys: A content-based image retrieval system using breast density patterns.
Comput Methods Programs Biomed. 2010 Sep;99(3):289-97. doi: 10.1016/j.cmpb.2010.01.005. Epub 2010 Mar 7.
4
Inductive logic programming for knowledge discovery from MRI data.
IEEE Eng Med Biol Mag. 2000 Jul-Aug;19(4):72-7. doi: 10.1109/51.853484.
5
Validation of results from knowledge discovery: mass density as a predictor of breast cancer.
J Digit Imaging. 2010 Oct;23(5):554-61. doi: 10.1007/s10278-009-9235-3. Epub 2009 Sep 16.
6
ATMTN: a telemammography network architecture.
IEEE Trans Biomed Eng. 2002 Dec;49(12):1438-43. doi: 10.1109/TBME.2002.805556.
7
[Results of mammography. A study from private practice].
Wien Med Wochenschr. 1971 Apr 10;121(15):324-5.
8
Consistent knowledge discovery in medical diagnosis.
IEEE Eng Med Biol Mag. 2000 Jul-Aug;19(4):26-37. doi: 10.1109/51.853479.
10
Computer vision and artificial intelligence in mammography.
AJR Am J Roentgenol. 1994 Mar;162(3):699-708. doi: 10.2214/ajr.162.3.8109525.

引用本文的文献

1
A decision support system for mammography reports interpretation.
Health Inf Sci Syst. 2020 Apr 1;8(1):17. doi: 10.1007/s13755-020-00109-5. eCollection 2020 Dec.
2
Putting the data before the algorithm in big data addressing personalized healthcare.
NPJ Digit Med. 2019 Aug 19;2:78. doi: 10.1038/s41746-019-0157-2. eCollection 2019.
3
Breast Imaging in the Era of Big Data: Structured Reporting and Data Mining.
AJR Am J Roentgenol. 2016 Feb;206(2):259-64. doi: 10.2214/AJR.15.15396. Epub 2015 Nov 20.
4
Predicting malignancy from mammography findings and image-guided core biopsies.
Int J Data Min Bioinform. 2015;11(3):257-76. doi: 10.1504/ijdmb.2015.067319.
5
Knowledge discovery for pancreatic cancer using inductive logic programming.
IET Syst Biol. 2014 Aug;8(4):162-8. doi: 10.1049/iet-syb.2013.0044.
6
Predicting Malignancy from Mammography Findings and Surgical Biopsies.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2011 Nov;2011. doi: 10.1109/BIBM.2011.71.
8
Information Extraction for Clinical Data Mining: A Mammography Case Study.
Proc IEEE Int Conf Data Min. 2009:37-42. doi: 10.1109/icdmw.2009.63.
10
The mammographic density of a mass is a significant predictor of breast cancer.
Radiology. 2011 Feb;258(2):417-25. doi: 10.1148/radiol.10100328. Epub 2010 Dec 21.

本文引用的文献

1
Periodic mammographic follow-up of probably benign lesions: results in 3,184 consecutive cases.
Radiology. 1991 May;179(2):463-8. doi: 10.1148/radiology.179.2.2014293.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验