Suppr超能文献

(φ,ψ)₂ 基序:一种纯粹基于构象的在两残基水平上对蛋白质部分进行细粒度枚举的方法。

(φ,ψ)₂ motifs: a purely conformation-based fine-grained enumeration of protein parts at the two-residue level.

机构信息

Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.

出版信息

J Mol Biol. 2012 Feb 10;416(1):78-93. doi: 10.1016/j.jmb.2011.12.022. Epub 2011 Dec 16.

Abstract

A deep understanding of protein structure benefits from the use of a variety of classification strategies that enhance our ability to effectively describe local patterns of conformation. Here, we use a clustering algorithm to analyze 76,533 all-trans segments from protein structures solved at 1.2 Å resolution or better to create a purely φ,ψ-based comprehensive empirical categorization of common conformations adopted by two adjacent φ,ψ pairs (i.e., (φ,ψ)(2) motifs). The clustering algorithm works in an origin-shifted four-dimensional space based on the two φ,ψ pairs to yield a parameter-dependent list of (φ,ψ)(2) motifs, in order of their prominence. The results are remarkably distinct from and complementary to the standard hydrogen-bond-centered view of secondary structure. New insights include an unprecedented level of precision in describing the φ,ψ angles of both previously known and novel motifs, ordering of these motifs by their population density, a data-driven recommendation that the standard C(α(i))…C(α(i+3))<7 Å criteria for defining turns be changed to 6.5 Å, identification of β-strand and turn capping motifs, and identification of conformational capping by residues in polypeptide II conformation. We further document that the conformational preferences of a residue are substantially influenced by the conformation of its neighbors, and we suggest that accounting for these dependencies will improve protein modeling accuracy. Although the CUEVAS-4D(r(10)є(14)) 'parts list' presented here is only an initial exploration of the complex (φ,ψ)(2) landscape of proteins, it shows that there is value to be had from this approach, and it opens the door to more in-depth characterizations at the (φ,ψ)(2) level and at higher dimensions.

摘要

深入了解蛋白质结构需要利用多种分类策略,这些策略可以增强我们有效描述构象局部模式的能力。在这里,我们使用聚类算法来分析来自蛋白质结构的 76533 个全反式片段,这些结构的分辨率在 1.2Å 或更好,以创建一种纯粹基于φ、ψ的常见构象的综合经验分类,这些构象由两个相邻的φ、ψ对(即(φ、ψ)(2)基序)采用。聚类算法在基于两个φ、ψ对的原点移位的四维空间中工作,以产生一个依赖参数的(φ、ψ)(2)基序列表,按其显著性顺序排列。这些结果与标准的基于氢键的二级结构视图截然不同,而且是互补的。新的见解包括以前已知和新的基序的φ、ψ角的描述精度空前提高,这些基序按其种群密度排序,基于数据的建议是将标准的 C(α(i))…C(α(i+3))<7Å 用于定义转弯的标准更改为 6.5Å,β-链和转弯帽基序的鉴定,以及多肽 II 构象中残基的构象帽鉴定。我们进一步证明,一个残基的构象偏好在很大程度上受到其相邻残基构象的影响,我们建议考虑这些依赖性将提高蛋白质建模的准确性。虽然这里呈现的 CUEVAS-4D(r(10)є(14))“零件清单”只是对蛋白质复杂的(φ、ψ)(2)景观的初步探索,但它表明这种方法具有价值,并为在(φ、ψ)(2)水平和更高维度上进行更深入的特征描述打开了大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11b/3268948/976ac24ff9d6/nihms-346057-f0001.jpg

相似文献

引用本文的文献

2
A complete Fourier-synthesis-based backbone-conformation-dependent library for proteins.基于傅里叶合成的完整的蛋白质骨架构象相关文库。
Acta Crystallogr D Struct Biol. 2021 Feb 1;77(Pt 2):249-266. doi: 10.1107/S2059798320016344. Epub 2021 Feb 2.

本文引用的文献

8
Free R value: cross-validation in crystallography.自由R值:晶体学中的交叉验证。
Methods Enzymol. 1997;277:366-96. doi: 10.1016/s0076-6879(97)77021-6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验